forked from BlockstreamResearch/secp256k1-zkp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmusig.c
212 lines (196 loc) · 8.94 KB
/
musig.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
/*************************************************************************
* Written in 2018 by Jonas Nick *
* To the extent possible under law, the author(s) have dedicated all *
* copyright and related and neighboring rights to the software in this *
* file to the public domain worldwide. This software is distributed *
* without any warranty. For the CC0 Public Domain Dedication, see *
* EXAMPLES_COPYING or https://creativecommons.org/publicdomain/zero/1.0 *
*************************************************************************/
/** This file demonstrates how to use the MuSig module to create a
* 3-of-3 multisignature. Additionally, see the documentation in
* include/secp256k1_musig.h and src/modules/musig/musig.md.
*/
#include <stdio.h>
#include <assert.h>
#include <secp256k1.h>
#include <secp256k1_schnorrsig.h>
#include <secp256k1_musig.h>
#include "random.h"
struct signer_secrets {
secp256k1_keypair keypair;
secp256k1_musig_secnonce secnonce;
};
struct signer {
secp256k1_xonly_pubkey pubkey;
secp256k1_musig_pubnonce pubnonce;
secp256k1_musig_partial_sig partial_sig;
};
/* Number of public keys involved in creating the aggregate signature */
#define N_SIGNERS 3
/* Create a key pair, store it in signer_secrets->keypair and signer->pubkey */
int create_keypair(const secp256k1_context* ctx, struct signer_secrets *signer_secrets, struct signer *signer) {
unsigned char seckey[32];
while (1) {
if (!fill_random(seckey, sizeof(seckey))) {
printf("Failed to generate randomness\n");
return 1;
}
if (secp256k1_keypair_create(ctx, &signer_secrets->keypair, seckey)) {
break;
}
}
if (!secp256k1_keypair_xonly_pub(ctx, &signer->pubkey, NULL, &signer_secrets->keypair)) {
return 0;
}
return 1;
}
/* Tweak the pubkey corresponding to the provided keyagg cache, update the cache
* and return the tweaked aggregate pk. */
int tweak(const secp256k1_context* ctx, secp256k1_xonly_pubkey *agg_pk, secp256k1_musig_keyagg_cache *cache) {
secp256k1_pubkey output_pk;
unsigned char ordinary_tweak[32] = "this could be a BIP32 tweak....";
unsigned char xonly_tweak[32] = "this could be a taproot tweak..";
/* Ordinary tweaking which, for example, allows deriving multiple child
* public keys from a single aggregate key using BIP32 */
if (!secp256k1_musig_pubkey_ec_tweak_add(ctx, NULL, cache, ordinary_tweak)) {
return 0;
}
/* Note that we did not provided an output_pk argument, because the
* resulting pk is also saved in the cache and so if one is just interested
* in signing the output_pk argument is unnecessary. On the other hand, if
* one is not interested in signing, the same output_pk can be obtained by
* calling `secp256k1_musig_pubkey_get` right after key aggregation to get
* the full pubkey and then call `secp256k1_ec_pubkey_tweak_add`. */
/* Xonly tweaking which, for example, allows creating taproot commitments */
if (!secp256k1_musig_pubkey_xonly_tweak_add(ctx, &output_pk, cache, xonly_tweak)) {
return 0;
}
/* Note that if we wouldn't care about signing, we can arrive at the same
* output_pk by providing the untweaked public key to
* `secp256k1_xonly_pubkey_tweak_add` (after converting it to an xonly pubkey
* if necessary with `secp256k1_xonly_pubkey_from_pubkey`). */
/* Now we convert the output_pk to an xonly pubkey to allow to later verify
* the Schnorr signature against it. For this purpose we can ignore the
* `pk_parity` output argument; we would need it if we would have to open
* the taproot commitment. */
if (!secp256k1_xonly_pubkey_from_pubkey(ctx, agg_pk, NULL, &output_pk)) {
return 0;
}
return 1;
}
/* Sign a message hash with the given key pairs and store the result in sig */
int sign(const secp256k1_context* ctx, struct signer_secrets *signer_secrets, struct signer *signer, const secp256k1_musig_keyagg_cache *cache, const unsigned char *msg32, unsigned char *sig64) {
int i;
const secp256k1_musig_pubnonce *pubnonces[N_SIGNERS];
const secp256k1_musig_partial_sig *partial_sigs[N_SIGNERS];
/* The same for all signers */
secp256k1_musig_session session;
for (i = 0; i < N_SIGNERS; i++) {
unsigned char seckey[32];
unsigned char session_id[32];
/* Create random session ID. It is absolutely necessary that the session ID
* is unique for every call of secp256k1_musig_nonce_gen. Otherwise
* it's trivial for an attacker to extract the secret key! */
if (!fill_random(session_id, sizeof(session_id))) {
return 0;
}
if (!secp256k1_keypair_sec(ctx, seckey, &signer_secrets[i].keypair)) {
return 0;
}
/* Initialize session and create secret nonce for signing and public
* nonce to send to the other signers. */
if (!secp256k1_musig_nonce_gen(ctx, &signer_secrets[i].secnonce, &signer[i].pubnonce, session_id, seckey, msg32, NULL, NULL)) {
return 0;
}
pubnonces[i] = &signer[i].pubnonce;
}
/* Communication round 1: A production system would exchange public nonces
* here before moving on. */
for (i = 0; i < N_SIGNERS; i++) {
secp256k1_musig_aggnonce agg_pubnonce;
/* Create aggregate nonce and initialize the session */
if (!secp256k1_musig_nonce_agg(ctx, &agg_pubnonce, pubnonces, N_SIGNERS)) {
return 0;
}
if (!secp256k1_musig_nonce_process(ctx, &session, &agg_pubnonce, msg32, cache, NULL)) {
return 0;
}
/* partial_sign will clear the secnonce by setting it to 0. That's because
* you must _never_ reuse the secnonce (or use the same session_id to
* create a secnonce). If you do, you effectively reuse the nonce and
* leak the secret key. */
if (!secp256k1_musig_partial_sign(ctx, &signer[i].partial_sig, &signer_secrets[i].secnonce, &signer_secrets[i].keypair, cache, &session)) {
return 0;
}
partial_sigs[i] = &signer[i].partial_sig;
}
/* Communication round 2: A production system would exchange
* partial signatures here before moving on. */
for (i = 0; i < N_SIGNERS; i++) {
/* To check whether signing was successful, it suffices to either verify
* the aggregate signature with the aggregate public key using
* secp256k1_schnorrsig_verify, or verify all partial signatures of all
* signers individually. Verifying the aggregate signature is cheaper but
* verifying the individual partial signatures has the advantage that it
* can be used to determine which of the partial signatures are invalid
* (if any), i.e., which of the partial signatures cause the aggregate
* signature to be invalid and thus the protocol run to fail. It's also
* fine to first verify the aggregate sig, and only verify the individual
* sigs if it does not work.
*/
if (!secp256k1_musig_partial_sig_verify(ctx, &signer[i].partial_sig, &signer[i].pubnonce, &signer[i].pubkey, cache, &session)) {
return 0;
}
}
return secp256k1_musig_partial_sig_agg(ctx, sig64, &session, partial_sigs, N_SIGNERS);
}
int main(void) {
secp256k1_context* ctx;
int i;
struct signer_secrets signer_secrets[N_SIGNERS];
struct signer signers[N_SIGNERS];
const secp256k1_xonly_pubkey *pubkeys_ptr[N_SIGNERS];
secp256k1_xonly_pubkey agg_pk;
secp256k1_musig_keyagg_cache cache;
unsigned char msg[32] = "this_could_be_the_hash_of_a_msg!";
unsigned char sig[64];
/* Create a context for signing and verification */
ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
printf("Creating key pairs......");
for (i = 0; i < N_SIGNERS; i++) {
if (!create_keypair(ctx, &signer_secrets[i], &signers[i])) {
printf("FAILED\n");
return 1;
}
pubkeys_ptr[i] = &signers[i].pubkey;
}
printf("ok\n");
printf("Combining public keys...");
/* If you just want to aggregate and not sign the cache can be NULL */
if (!secp256k1_musig_pubkey_agg(ctx, NULL, &agg_pk, &cache, pubkeys_ptr, N_SIGNERS)) {
printf("FAILED\n");
return 1;
}
printf("ok\n");
printf("Tweaking................");
/* Optionally tweak the aggregate key */
if (!tweak(ctx, &agg_pk, &cache)) {
printf("FAILED\n");
return 1;
}
printf("ok\n");
printf("Signing message.........");
if (!sign(ctx, signer_secrets, signers, &cache, msg, sig)) {
printf("FAILED\n");
return 1;
}
printf("ok\n");
printf("Verifying signature.....");
if (!secp256k1_schnorrsig_verify(ctx, sig, msg, 32, &agg_pk)) {
printf("FAILED\n");
return 1;
}
printf("ok\n");
secp256k1_context_destroy(ctx);
return 0;
}