forked from erikbern/ann-benchmarks
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest-metrics.py
99 lines (76 loc) · 2.99 KB
/
test-metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import unittest
from ann_benchmarks.plotting.metrics import (
knn, queries_per_second, index_size, build_time, candidates,
epsilon, rel)
class DummyMetric():
def __init__(self):
self.attrs = {}
self.d = {}
def __getitem__(self, key):
return self.d.get(key, None)
def __setitem__(self, key, value):
self.d[key] = value
def __contains__(self, key):
return key in self.d
def create_group(self, name):
self.d[name] = DummyMetric()
return self.d[name]
class TestMetrics(unittest.TestCase):
def setUp(self):
pass
def test_recall(self):
exact_queries = [[0.1, 0.25]]
run1 = [[]]
run2 = [[0.2, 0.3]]
run3 = [[0.2]]
run4 = [[0.2, 0.25]]
self.assertAlmostEqual(
knn(exact_queries, run1, 2, DummyMetric()).attrs['mean'], 0.0)
self.assertAlmostEqual(
knn(exact_queries, run2, 2, DummyMetric()).attrs['mean'], 0.5)
self.assertAlmostEqual(
knn(exact_queries, run3, 2, DummyMetric()).attrs['mean'], 0.5)
self.assertAlmostEqual(
knn(exact_queries, run4, 2, DummyMetric()).attrs['mean'], 1.0)
def test_epsilon_recall(self):
exact_queries = [[0.05, 0.08, 0.24, 0.3]]
run1 = [[]]
run2 = [[0.1, 0.2, 0.55, 0.7]]
self.assertAlmostEqual(
epsilon(exact_queries, run1, 4, DummyMetric(), 1).attrs['mean'],
0.0)
self.assertAlmostEqual(
epsilon(exact_queries, run2, 4,
DummyMetric(), 0.0001).attrs['mean'],
0.5)
# distance can be off by factor (1 + 1) * 0.3 = 0.6 => recall .75
self.assertAlmostEqual(
epsilon(exact_queries, run2, 4, DummyMetric(), 1).attrs['mean'],
0.75)
# distance can be off by factor (1 + 2) * 0.3 = 0.9 => recall 1
self.assertAlmostEqual(
epsilon(exact_queries, run2, 4, DummyMetric(), 2).attrs['mean'],
1.0)
def test_relative(self):
exact_queries = [[0.1, 0.2, 0.25, 0.3]]
run1 = []
run2 = [[0.1, 0.2, 0.25, 0.3]]
run3 = [[0.1, 0.2, 0.55, 0.9]]
self.assertAlmostEqual(
rel(exact_queries, run1, DummyMetric()), float("inf"))
self.assertAlmostEqual(rel(exact_queries, run2, DummyMetric()), 1)
# total distance exact: 0.85, total distance run3: 1.75
self.assertAlmostEqual(rel(exact_queries, run3, DummyMetric()),
1.75 / 0.85)
def test_queries_per_second(self):
self.assertAlmostEqual(
queries_per_second([], {"best_search_time": 0.01}),
100)
def test_index_size(self):
self.assertEqual(index_size([], {"index_size": 100}), 100)
def test_build_time(self):
self.assertEqual(build_time([], {"build_time": 100}), 100)
def test_candidates(self):
self.assertEqual(candidates([], {"candidates": 10}), 10)
if __name__ == '__main__':
unittest.main()