-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathrun_vep.py
170 lines (143 loc) · 7.5 KB
/
run_vep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
#!/usr/bin/env python
__version__ = 0.3
__author__ = 'Joon An'
__date__ = 'October 5th, 2018'
description = '''
Script for genomic and functional annotations using VEP.
'''
import os,sys,glob,argparse
from os.path import expanduser
def main(infile, number_threads):
## Set the run
if '/home/ec2-user' in expanduser("~"):
vep_path = '/home/ec2-user/ensembl-vep/vep'
custom_path = '/home/ec2-user/custom/'
else:
print expanduser("~")
sys.exit(0)
## Split input file for a single chromosome
chroms = ['chr' + str(n) for n in range(1,23)]
for chrom in chroms:
tmp = '.'.join(['tmp', chrom, 'vcf'])
o = open(tmp, 'w')
header = '\t'.join(['#CHROM','POS','ID','REF','ALT','QUAL','FILTER','INFO'])
o.write(header + '\n')
with open(infile) as fh:
for l in fh:
l_chrom = l.split('\t')[0]
if 'chr' not in l_chrom:
l_chrom = 'chr' + l_chrom
else:
pass
## Check if the chromosome matching write to tmp file
if l_chrom == chrom:
o.write(l)
else:
pass
o.close()
## Get a command for run
cmds = []
for chrom in chroms:
tmp = '.'.join(['tmp', chrom, 'vcf'])
outfile = 'output.vep.' + chrom + '.vcf'
## Add basic information
cmd = [vep_path,
'--assembly GRCh38 --offline',
'--fork 2',
'--force_overwrite',
'--buffer_size 5000000000',
'-i', tmp,
'-o', outfile,
'--vcf',
'--no_stats',
'--polyphen p',
'--ccds',
# '--hgvs', # it adds 50% run time as it checks the fasta file
'--numbers',
# '--domains',
# '--regulatory',
'--canonical',
'--protein',
'--biotype',
'--uniprot',
'--tsl',
'--appris'
# '--gene_phenotype',
# '--af',
# '--pubmed',
# '--variant_class'
# '--everything'
]
## Output only the most severe consequence per gene.
cmd = cmd + ['--per_gene',
'--pick --pick_order canonical,appris,tsl,biotype,ccds,rank,length']
## Add options for nearest and distance
cmd = cmd + ['--distance 2000',
'--nearest symbol',
'--symbol']
## Add custom annotations
cmd = cmd + [
','.join(['-custom ' + custom_path + 'gnomad.genomes.r2.0.1.sites.GRCh38.noVEP.vcf.gz','gnomADg','vcf,exact,0,AF']),
','.join(['-custom ' + custom_path + 'phastCons46way.vertebrate.hg19ToHg38.bw','phastCons46wayVt','bigwig','overlap','0']),
','.join(['-custom ' + custom_path + 'phyloP46way.vertebrate.hg19ToHg38.bw','phyloP46wayVt','bigwig','overlap','0']),
','.join(['-custom ' + custom_path + 'ChmmState15.E1.Brain.hg19to38.sorted.bed.gz','ChmmState15_E1_Brain','bed','overlap','0']),
','.join(['-custom ' + custom_path + 'ChmmState15.E2.Brain.hg19to38.sorted.bed.gz','ChmmState15_E2_Brain','bed','overlap','0']),
','.join(['-custom ' + custom_path + 'ChmmState15.E3.Brain.hg19to38.sorted.bed.gz','ChmmState15_E3_Brain','bed','overlap','0']),
','.join(['-custom ' + custom_path + 'ChmmState15.E4.Brain.hg19to38.sorted.bed.gz','ChmmState15_E4_Brain','bed','overlap','0']),
','.join(['-custom ' + custom_path + 'ChmmState15.E5.Brain.hg19to38.sorted.bed.gz','ChmmState15_E5_Brain','bed','overlap','0']),
','.join(['-custom ' + custom_path + 'ChmmState15.E6.Brain.hg19to38.sorted.bed.gz','ChmmState15_E6_Brain','bed','overlap','0']),
','.join(['-custom ' + custom_path + 'ChmmState15.E7.Brain.hg19to38.sorted.bed.gz','ChmmState15_E7_Brain','bed','overlap','0']),
','.join(['-custom ' + custom_path + 'ChmmState15.E8.Brain.hg19to38.sorted.bed.gz','ChmmState15_E8_Brain','bed','overlap','0']),
','.join(['-custom ' + custom_path + 'ChmmState15.E9.Brain.hg19to38.sorted.bed.gz','ChmmState15_E9_Brain','bed','overlap','0']),
','.join(['-custom ' + custom_path + 'ChmmState15.E10.Brain.hg19to38.sorted.bed.gz','ChmmState15_E10_Brain','bed','overlap','0']),
','.join(['-custom ' + custom_path + 'ChmmState15.E11.Brain.hg19to38.sorted.bed.gz','ChmmState15_E11_Brain','bed','overlap','0']),
','.join(['-custom ' + custom_path + 'ChmmState15.E12.Brain.hg19to38.sorted.bed.gz','ChmmState15_E12_Brain','bed','overlap','0']),
','.join(['-custom ' + custom_path + 'ChmmState15.E13.Brain.hg19to38.sorted.bed.gz','ChmmState15_E13_Brain','bed','overlap','0']),
','.join(['-custom ' + custom_path + 'ChmmState15.E14.Brain.hg19to38.sorted.bed.gz','ChmmState15_E14_Brain','bed','overlap','0']),
','.join(['-custom ' + custom_path + 'ChmmState15.E15.Brain.hg19to38.sorted.bed.gz','ChmmState15_E15_Brain','bed','overlap','0']),
','.join(['-custom ' + custom_path + 'EpigenomeByGroup4.DNaseFDR001.Brain.hg19to38.sorted.bed.gz','EpigenomeByGroup4_DNaseFDR001_Brain','bed','overlap','0']),
','.join(['-custom ' + custom_path + 'EpigenomeByGroup4.H3K27ac.Brain.hg19to38.sorted.bed.gz','EpigenomeByGroup4_H3K27ac_Brain','bed','overlap','0']),
','.join(['-custom ' + custom_path + 'EpigenomeByGroup4.H3K27me3.Brain.hg19to38.sorted.bed.gz','EpigenomeByGroup4_H3K27me3_Brain','bed','overlap','0']),
','.join(['-custom ' + custom_path + 'EpigenomeByGroup4.H3K36me3.Brain.hg19to38.sorted.bed.gz','EpigenomeByGroup4_H3K36me3_Brain','bed','overlap','0']),
','.join(['-custom ' + custom_path + 'EpigenomeByGroup4.H3K4me1.Brain.hg19to38.sorted.bed.gz','EpigenomeByGroup4_H3K4me1_Brain','bed','overlap','0']),
','.join(['-custom ' + custom_path + 'EpigenomeByGroup4.H3K4me3.Brain.hg19to38.sorted.bed.gz','EpigenomeByGroup4_H3K4me3_Brain','bed','overlap','0']),
','.join(['-custom ' + custom_path + 'EpigenomeByGroup4.H3K9ac.Brain.hg19to38.sorted.bed.gz','EpigenomeByGroup4_H3K9ac_Brain','bed','overlap','0']),
','.join(['-custom ' + custom_path + 'EpigenomeByGroup4.H3K9me3.Brain.hg19to38.sorted.bed.gz','EpigenomeByGroup4_H3K9me3_Brain','bed','overlap','0']),
','.join(['-custom ' + custom_path + 'H3K27ac.160407.multiInt.filtBy2.merge.3col.hg19to38.sorted.bed.gz','H3K27ac_160407_multiInt_filtBy2_merge_3col','bed','overlap','0']),
','.join(['-custom ' + custom_path + 'atac.norep.160407.multiInt.filtBy2.merge.3col.hg19to38.sorted.bed.gz','atac_norep_160407_multiInt_filtBy2_merge_3col','bed','overlap','0']),
','.join(['-custom ' + custom_path + 'bamo_EncodeDNaseClustersUCSC.hg19to38.sorted.bed.gz','EncodeDNaseClustersUCSC','bed','overlap','0']),
','.join(['-custom ' + custom_path + 'bamo_EncodeTfbsClusterV2UCSC.hg19to38.sorted.bed.gz','EncodeTfbsClusterV2UCSC','bed','overlap','0']),
','.join(['-custom ' + custom_path + 'bamo_vistaEnhancerUCSC.hg19to38.sorted.bed.gz','vistaEnhancerUCSC','bed','overlap','0']),
','.join(['-custom ' + custom_path + 'fantom5.enhancer.robust.hg19to38.sorted.bed.gz','fantom5_enhancer_robust','bed','overlap','0']),
','.join(['-custom ' + custom_path + 'hg19_HARs_Doan2016.hg19to38.sorted.bed.gz','HARs_Doan2016','bed','overlap','0'])
]
cmd = ' '.join(cmd)
cmds.append(cmd)
## Run VEP in parallel
import multiprocessing as mp
pool = mp.Pool(number_threads)
pool.map(os.system, cmds)
pool.close()
pool.join()
## Collates outputs into one
outfile = infile.replace('txt','vep_gene.txt')
o = open(outfile, 'w')
fs = sorted(glob.glob('output*vcf'))
for f in fs:
with open(f) as fh:
if fs.index(f) == 0:
for l in fh:
o.write(l)
else:
for l in fh:
if l[0] == '#':
pass
else:
o.write(l)
o.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='')
parser.add_argument('-i','--infile', required=True, type=str, help='Input File')
parser.add_argument('-t','--number_threads', required=False, type=int, help='Number of threads', default=1)
args = parser.parse_args()
main(args.infile, args.number_threads)