-
Notifications
You must be signed in to change notification settings - Fork 32
/
dcgan.py
137 lines (96 loc) · 4.61 KB
/
dcgan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
#!/usr/bin/env/python
# Tensorflow impl. of DCGAN
from tensorflow.examples.tutorials.mnist import input_data
from common import *
from datasets import data_celeba, data_mnist
from models.celeba_models import *
from models.mnist_models import *
def train_dcgan(data, g_net, d_net, name='DCGAN',
dim_z=128, n_iters=1e5, lr=1e-4, batch_size=128,
sampler=sample_z, eval_funcs=[]):
### 0. Common preparation
hyperparams = {'LR': lr}
base_dir, out_dir, log_dir = create_dirs(name, g_net.name, d_net.name, hyperparams)
global_step = tf.Variable(0, trainable=False)
increment_step = tf.assign_add(global_step, 1)
lr = tf.constant(lr)
### 1. Define network structure
x_shape = data.train.images[0].shape
z0 = tf.placeholder(tf.float32, shape=[None, dim_z]) # Latent var.
x0 = tf.placeholder(tf.float32, shape=(None,) + x_shape) # Generated images
G = g_net(z0, 'DCGAN_G')
D_real = d_net(x0, 'DCGAN_D')
D_fake = d_net(G, 'DCGAN_D', reuse=True)
# Loss functions
D_loss = tf.reduce_mean(-tf.log(D_real)-tf.log(1-D_fake))
G_loss = tf.reduce_mean(-tf.log(D_fake))
D_solver = (tf.train.AdamOptimizer(learning_rate=lr, beta1=0.5)) \
.minimize(D_loss, var_list=get_trainable_params('DCGAN_D'))
G_solver = (tf.train.AdamOptimizer(learning_rate=lr, beta1=0.5)) \
.minimize(G_loss, var_list=get_trainable_params('DCGAN_G'))
#### 2. Operations for log/state back-up
tf.summary.scalar('DCGAN_D(x)', tf.reduce_mean(D_real))
tf.summary.scalar('DCGAN_D(G)', tf.reduce_mean(D_fake))
tf.summary.scalar('DCGAN_D_loss', tf.reduce_mean(D_loss))
tf.summary.scalar('DCGAN_G_loss', tf.reduce_mean(G_loss))
if check_dataset_type(x_shape) != 'synthetic':
tf.summary.image('DCGAN', G, max_outputs=4) # for images only
summaries = tf.summary.merge_all()
saver = tf.train.Saver(get_trainable_params('DCGAN_D') + get_trainable_params('DCGAN_G'))
# Initial setup for visualization
outputs = [G]
figs = [None] * len(outputs)
fig_names = ['fig_gen_{:04d}_DCGAN.png']
plt.ion()
### 3. Run a session
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.95)
sess = tf.Session(config=tf.ConfigProto(log_device_placement=False, allow_soft_placement=True, gpu_options=gpu_options))
sess.run(tf.global_variables_initializer())
writer = tf.summary.FileWriter(log_dir, sess.graph)
print('{:>10}, {:>7}, {:>7}, {:>7}') \
.format('Iters', 'cur_LR', 'DCGAN_D', 'DCGAN_G')
for it in range(int(n_iters)):
batch_xs, batch_ys = data.train.next_batch(batch_size)
_, loss_D = sess.run(
[D_solver, D_loss],
feed_dict={x0: batch_xs, z0: sampler(batch_size, dim_z)}
)
_, loss_G = sess.run(
[G_solver, G_loss],
feed_dict={z0: sampler(batch_size, dim_z)}
)
_, cur_lr = sess.run([increment_step, lr])
if it % PRNT_INTERVAL == 0:
print('{:10d}, {:1.4f}, {: 1.4f}, {: 1.4f}') \
.format(it, cur_lr, loss_D, loss_G)
# Tensorboard
cur_summary = sess.run(summaries, feed_dict={x0: batch_xs, z0: sampler(batch_size, dim_z)})
writer.add_summary(cur_summary, it)
if it % EVAL_INTERVAL == 0:
img_generator = lambda n: sess.run(output, feed_dict={z0: sampler(n, dim_z)})
for i, output in enumerate(outputs):
figs[i] = data.plot(img_generator, fig_id=i)
figs[i].canvas.draw()
plt.savefig(out_dir + fig_names[i].format(it / 1000), bbox_inches='tight')
# Run evaluation functions
for func in eval_funcs:
func(it, img_generator)
if it % SAVE_INTERVAL == 0:
saver.save(sess, out_dir + 'dcgan', it)
if __name__ == '__main__':
args = parse_args(additional_args=[])
print args
if args.gpu:
set_gpu(args.gpu)
if args.datasets == 'mnist':
dim_z = 64
data = data_mnist.MnistWrapper('datasets/mnist/')
g_net = SimpleGEN(dim_z, last_act=tf.sigmoid)
d_net = SimpleCNN(1, last_act=tf.sigmoid)
train_dcgan(data, g_net, d_net, name='DCGAN_mnist', dim_z=dim_z, batch_size=args.batchsize, lr=args.lr)
elif args.datasets == 'celeba':
dim_z = 128
data = data_celeba.CelebA('datasets/img_align_celeba')
g_net = DCGAN_G(dim_z, last_act=tf.tanh)
d_net = DCGAN_D(1, last_act=tf.sigmoid)
train_dcgan(data, g_net, d_net, name='DCGAN_celeba', dim_z=dim_z, batch_size=args.batchsize, lr=args.lr)