forked from yuweihao/KERN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_rels.py
240 lines (193 loc) · 10.8 KB
/
train_rels.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
"""
Training script for scene graph detection. Integrated with Rowan's faster rcnn setup
"""
from dataloaders.visual_genome import VGDataLoader, VG
import numpy as np
from torch import optim
import torch
import pandas as pd
import time
import os
from config import ModelConfig, BOX_SCALE, IM_SCALE
from torch.nn import functional as F
from lib.pytorch_misc import optimistic_restore, de_chunkize, clip_grad_norm
from lib.evaluation.sg_eval import BasicSceneGraphEvaluator, calculate_mR_from_evaluator_list, eval_entry
from lib.pytorch_misc import print_para
from torch.optim.lr_scheduler import ReduceLROnPlateau
# import KERN model
from lib.kern_model import KERN
conf = ModelConfig()
# We use tensorboard to observe results and decrease learning rate manually. If you want to use TB, you need to install TensorFlow fist.
if conf.tb_log_dir is not None:
from tensorboardX import SummaryWriter
if not os.path.exists(conf.tb_log_dir):
os.makedirs(conf.tb_log_dir)
writer = SummaryWriter(log_dir=conf.tb_log_dir)
use_tb = True
else:
use_tb = False
train, val, _ = VG.splits(num_val_im=conf.val_size, filter_duplicate_rels=True,
use_proposals=conf.use_proposals,
filter_non_overlap=conf.mode == 'sgdet')
ind_to_predicates = train.ind_to_predicates # ind_to_predicates[0] means no relationship
train_loader, val_loader = VGDataLoader.splits(train, val, mode='rel',
batch_size=conf.batch_size,
num_workers=conf.num_workers,
num_gpus=conf.num_gpus)
detector = KERN(classes=train.ind_to_classes, rel_classes=train.ind_to_predicates,
num_gpus=conf.num_gpus, mode=conf.mode, require_overlap_det=True,
use_resnet=conf.use_resnet, use_proposals=conf.use_proposals, pooling_dim=conf.pooling_dim,
use_ggnn_obj=conf.use_ggnn_obj, ggnn_obj_time_step_num=conf.ggnn_obj_time_step_num,
ggnn_obj_hidden_dim=conf.ggnn_obj_hidden_dim, ggnn_obj_output_dim=conf.ggnn_obj_output_dim,
use_obj_knowledge=conf.use_obj_knowledge, obj_knowledge=conf.obj_knowledge,
use_ggnn_rel=conf.use_ggnn_rel, ggnn_rel_time_step_num=conf.ggnn_rel_time_step_num,
ggnn_rel_hidden_dim=conf.ggnn_rel_hidden_dim, ggnn_rel_output_dim=conf.ggnn_rel_output_dim,
use_rel_knowledge=conf.use_rel_knowledge, rel_knowledge=conf.rel_knowledge)
# Freeze the detector
for n, param in detector.detector.named_parameters():
param.requires_grad = False
print(print_para(detector), flush=True)
def get_optim(lr):
# Lower the learning rate on the VGG fully connected layers by 1/10th. It's a hack, but it helps
# stabilize the models.
fc_params = [p for n,p in detector.named_parameters() if n.startswith('roi_fmap') and p.requires_grad]
non_fc_params = [p for n,p in detector.named_parameters() if not n.startswith('roi_fmap') and p.requires_grad]
params = [{'params': fc_params, 'lr': lr / 10.0}, {'params': non_fc_params}]
# params = [p for n,p in detector.named_parameters() if p.requires_grad]
if conf.adam:
optimizer = optim.Adam(params, weight_decay=conf.adamwd, lr=lr, eps=1e-3)
else:
optimizer = optim.SGD(params, weight_decay=conf.l2, lr=lr, momentum=0.9)
# scheduler = ReduceLROnPlateau(optimizer, 'max', patience=3, factor=0.1,
# verbose=True, threshold=0.0001, threshold_mode='abs', cooldown=1)
return optimizer #, scheduler
ckpt = torch.load(conf.ckpt)
if conf.ckpt.split('-')[-2].split('/')[-1] == 'vgrel':
print("Loading EVERYTHING")
start_epoch = ckpt['epoch']
if not optimistic_restore(detector, ckpt['state_dict']):
start_epoch = -1
# optimistic_restore(detector.detector, torch.load('checkpoints/vgdet/vg-28.tar')['state_dict'])
else:
start_epoch = -1
optimistic_restore(detector.detector, ckpt['state_dict'])
detector.roi_fmap[1][0].weight.data.copy_(ckpt['state_dict']['roi_fmap.0.weight'])
detector.roi_fmap[1][3].weight.data.copy_(ckpt['state_dict']['roi_fmap.3.weight'])
detector.roi_fmap[1][0].bias.data.copy_(ckpt['state_dict']['roi_fmap.0.bias'])
detector.roi_fmap[1][3].bias.data.copy_(ckpt['state_dict']['roi_fmap.3.bias'])
detector.roi_fmap_obj[0].weight.data.copy_(ckpt['state_dict']['roi_fmap.0.weight'])
detector.roi_fmap_obj[3].weight.data.copy_(ckpt['state_dict']['roi_fmap.3.weight'])
detector.roi_fmap_obj[0].bias.data.copy_(ckpt['state_dict']['roi_fmap.0.bias'])
detector.roi_fmap_obj[3].bias.data.copy_(ckpt['state_dict']['roi_fmap.3.bias'])
detector.cuda()
def train_epoch(epoch_num):
detector.train()
tr = []
start = time.time()
for b, batch in enumerate(train_loader):
tr.append(train_batch(batch, verbose=b % (conf.print_interval*10) == 0)) #b == 0))
if b % conf.print_interval == 0 and b >= conf.print_interval:
mn = pd.concat(tr[-conf.print_interval:], axis=1).mean(1)
time_per_batch = (time.time() - start) / conf.print_interval
print("\ne{:2d}b{:5d}/{:5d} {:.3f}s/batch, {:.1f}m/epoch".format(
epoch_num, b, len(train_loader), time_per_batch, len(train_loader) * time_per_batch / 60))
print(mn)
print('-----------', flush=True)
start = time.time()
return pd.concat(tr, axis=1)
def train_batch(b, verbose=False):
"""
:param b: contains:
:param imgs: the image, [batch_size, 3, IM_SIZE, IM_SIZE]
:param all_anchors: [num_anchors, 4] the boxes of all anchors that we'll be using
:param all_anchor_inds: [num_anchors, 2] array of the indices into the concatenated
RPN feature vector that give us all_anchors,
each one (img_ind, fpn_idx)
:param im_sizes: a [batch_size, 4] numpy array of (h, w, scale, num_good_anchors) for each image.
:param num_anchors_per_img: int, number of anchors in total over the feature pyramid per img
Training parameters:
:param train_anchor_inds: a [num_train, 5] array of indices for the anchors that will
be used to compute the training loss (img_ind, fpn_idx)
:param gt_boxes: [num_gt, 4] GT boxes over the batch.
:param gt_classes: [num_gt, 2] gt boxes where each one is (img_id, class)
:return:
"""
result = detector[b]
losses = {}
if conf.use_ggnn_obj: # if not use ggnn obj, we just use scores of faster rcnn as their scores, there is no need to train
losses['class_loss'] = F.cross_entropy(result.rm_obj_dists, result.rm_obj_labels)
losses['rel_loss'] = F.cross_entropy(result.rel_dists, result.rel_labels[:, -1])
loss = sum(losses.values())
optimizer.zero_grad()
loss.backward()
clip_grad_norm(
[(n, p) for n, p in detector.named_parameters() if p.grad is not None],
max_norm=conf.clip, verbose=verbose, clip=True)
losses['total'] = loss
optimizer.step()
res = pd.Series({x: y.data[0] for x, y in losses.items()})
return res
def val_epoch():
detector.eval()
evaluator_list = [] # for calculating recall of each relationship except no relationship
evaluator_multiple_preds_list = []
for index, name in enumerate(ind_to_predicates):
if index == 0:
continue
evaluator_list.append((index, name, BasicSceneGraphEvaluator.all_modes()))
evaluator_multiple_preds_list.append((index, name, BasicSceneGraphEvaluator.all_modes(multiple_preds=True)))
evaluator = BasicSceneGraphEvaluator.all_modes() # for calculating recall
evaluator_multiple_preds = BasicSceneGraphEvaluator.all_modes(multiple_preds=True)
for val_b, batch in enumerate(val_loader):
val_batch(conf.num_gpus * val_b, batch, evaluator, evaluator_multiple_preds, evaluator_list, evaluator_multiple_preds_list)
recall = evaluator[conf.mode].print_stats()
recall_mp = evaluator_multiple_preds[conf.mode].print_stats()
mean_recall = calculate_mR_from_evaluator_list(evaluator_list, conf.mode)
mean_recall_mp = calculate_mR_from_evaluator_list(evaluator_multiple_preds_list, conf.mode, multiple_preds=True)
return recall, recall_mp, mean_recall, mean_recall_mp
def val_batch(batch_num, b, evaluator, evaluator_multiple_preds, evaluator_list, evaluator_multiple_preds_list):
det_res = detector[b]
if conf.num_gpus == 1:
det_res = [det_res]
for i, (boxes_i, objs_i, obj_scores_i, rels_i, pred_scores_i) in enumerate(det_res):
gt_entry = {
'gt_classes': val.gt_classes[batch_num + i].copy(),
'gt_relations': val.relationships[batch_num + i].copy(),
'gt_boxes': val.gt_boxes[batch_num + i].copy(),
}
assert np.all(objs_i[rels_i[:, 0]] > 0) and np.all(objs_i[rels_i[:, 1]] > 0)
pred_entry = {
'pred_boxes': boxes_i * BOX_SCALE/IM_SCALE,
'pred_classes': objs_i,
'pred_rel_inds': rels_i,
'obj_scores': obj_scores_i,
'rel_scores': pred_scores_i, # hack for now.
}
eval_entry(conf.mode, gt_entry, pred_entry, evaluator, evaluator_multiple_preds,
evaluator_list, evaluator_multiple_preds_list)
print("Training starts now!")
optimizer = get_optim(conf.lr * conf.num_gpus * conf.batch_size)
for epoch in range(start_epoch + 1, start_epoch + 1 + conf.num_epochs):
rez = train_epoch(epoch)
print("overall{:2d}: ({:.3f})\n{}".format(epoch, rez.mean(1)['total'], rez.mean(1)), flush=True)
if use_tb:
writer.add_scalar('loss/rel_loss', rez.mean(1)['rel_loss'], epoch)
if conf.use_ggnn_obj:
writer.add_scalar('loss/class_loss', rez.mean(1)['class_loss'], epoch)
writer.add_scalar('loss/total', rez.mean(1)['total'], epoch)
if conf.save_dir is not None:
torch.save({
'epoch': epoch,
'state_dict': detector.state_dict(), #{k:v for k,v in detector.state_dict().items() if not k.startswith('detector.')},
# 'optimizer': optimizer.state_dict(),
}, os.path.join(conf.save_dir, '{}-{}.tar'.format('vgrel', epoch)))
recall, recall_mp, mean_recall, mean_recall_mp = val_epoch()
if use_tb:
for key, value in recall.items():
writer.add_scalar('eval_' + conf.mode + '_with_constraint/' + key, value, epoch)
for key, value in recall_mp.items():
writer.add_scalar('eval_' + conf.mode + '_without_constraint/' + key, value, epoch)
for key, value in mean_recall.items():
writer.add_scalar('eval_' + conf.mode + '_with_constraint/mean ' + key, value, epoch)
for key, value in mean_recall_mp.items():
writer.add_scalar('eval_' + conf.mode + '_without_constraint/mean ' + key, value, epoch)