forked from mne-tools/mne-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
proj.py
407 lines (353 loc) · 14.1 KB
/
proj.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
# Authors: Alexandre Gramfort <[email protected]>
#
# License: BSD (3-clause)
import numpy as np
from scipy import linalg
from . import io, Epochs
from .utils import check_fname, logger, verbose
from .io.pick import pick_types, pick_types_forward
from .io.proj import Projection, _has_eeg_average_ref_proj
from .event import make_fixed_length_events
from .parallel import parallel_func
from .cov import _check_n_samples
from .forward import (is_fixed_orient, _subject_from_forward,
convert_forward_solution)
from .source_estimate import SourceEstimate, VolSourceEstimate
from .io.proj import make_projector, make_eeg_average_ref_proj
def read_proj(fname):
"""Read projections from a FIF file.
Parameters
----------
fname : string
The name of file containing the projections vectors. It should end with
-proj.fif or -proj.fif.gz.
Returns
-------
projs : list
The list of projection vectors.
See Also
--------
write_proj
"""
check_fname(fname, 'projection', ('-proj.fif', '-proj.fif.gz'))
ff, tree, _ = io.fiff_open(fname)
with ff as fid:
projs = io.proj._read_proj(fid, tree)
return projs
def write_proj(fname, projs):
"""Write projections to a FIF file.
Parameters
----------
fname : string
The name of file containing the projections vectors. It should end with
-proj.fif or -proj.fif.gz.
projs : list
The list of projection vectors.
See Also
--------
read_proj
"""
check_fname(fname, 'projection', ('-proj.fif', '-proj.fif.gz'))
fid = io.write.start_file(fname)
io.proj._write_proj(fid, projs)
io.write.end_file(fid)
@verbose
def _compute_proj(data, info, n_grad, n_mag, n_eeg, desc_prefix, verbose=None):
mag_ind = pick_types(info, meg='mag', ref_meg=False, exclude='bads')
grad_ind = pick_types(info, meg='grad', ref_meg=False, exclude='bads')
eeg_ind = pick_types(info, meg=False, eeg=True, ref_meg=False,
exclude='bads')
if (n_grad > 0) and len(grad_ind) == 0:
logger.info("No gradiometers found. Forcing n_grad to 0")
n_grad = 0
if (n_mag > 0) and len(mag_ind) == 0:
logger.info("No magnetometers found. Forcing n_mag to 0")
n_mag = 0
if (n_eeg > 0) and len(eeg_ind) == 0:
logger.info("No EEG channels found. Forcing n_eeg to 0")
n_eeg = 0
ch_names = info['ch_names']
grad_names, mag_names, eeg_names = ([ch_names[k] for k in ind]
for ind in [grad_ind, mag_ind,
eeg_ind])
projs = []
for n, ind, names, desc in zip([n_grad, n_mag, n_eeg],
[grad_ind, mag_ind, eeg_ind],
[grad_names, mag_names, eeg_names],
['planar', 'axial', 'eeg']):
if n == 0:
continue
data_ind = data[ind][:, ind]
# data is the covariance matrix: U * S**2 * Ut
U, Sexp2, _ = linalg.svd(data_ind, full_matrices=False,
overwrite_a=True)
U = U[:, :n]
exp_var = Sexp2 / Sexp2.sum()
exp_var = exp_var[:n]
for k, (u, var) in enumerate(zip(U.T, exp_var)):
proj_data = dict(col_names=names, row_names=None,
data=u[np.newaxis, :], nrow=1, ncol=u.size)
this_desc = "%s-%s-PCA-%02d" % (desc, desc_prefix, k + 1)
logger.info("Adding projection: %s" % this_desc)
proj = Projection(active=False, data=proj_data,
desc=this_desc, kind=1, explained_var=var)
projs.append(proj)
return projs
@verbose
def compute_proj_epochs(epochs, n_grad=2, n_mag=2, n_eeg=2, n_jobs=1,
desc_prefix=None, verbose=None):
"""Compute SSP (spatial space projection) vectors on Epochs.
Parameters
----------
epochs : instance of Epochs
The epochs containing the artifact
n_grad : int
Number of vectors for gradiometers
n_mag : int
Number of vectors for magnetometers
n_eeg : int
Number of vectors for EEG channels
n_jobs : int
Number of jobs to use to compute covariance
desc_prefix : str | None
The description prefix to use. If None, one will be created based on
the event_id, tmin, and tmax.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
projs: list
List of projection vectors
See Also
--------
compute_proj_raw, compute_proj_evoked
"""
# compute data covariance
data = _compute_cov_epochs(epochs, n_jobs)
event_id = epochs.event_id
if event_id is None or len(list(event_id.keys())) == 0:
event_id = '0'
elif len(event_id.keys()) == 1:
event_id = str(list(event_id.values())[0])
else:
event_id = 'Multiple-events'
if desc_prefix is None:
desc_prefix = "%s-%-.3f-%-.3f" % (event_id, epochs.tmin, epochs.tmax)
return _compute_proj(data, epochs.info, n_grad, n_mag, n_eeg, desc_prefix)
def _compute_cov_epochs(epochs, n_jobs):
"""Compute epochs covariance."""
parallel, p_fun, _ = parallel_func(np.dot, n_jobs)
data = parallel(p_fun(e, e.T) for e in epochs)
n_epochs = len(data)
if n_epochs == 0:
raise RuntimeError('No good epochs found')
n_chan, n_samples = epochs.info['nchan'], len(epochs.times)
_check_n_samples(n_samples * n_epochs, n_chan)
data = sum(data)
return data
@verbose
def compute_proj_evoked(evoked, n_grad=2, n_mag=2, n_eeg=2, verbose=None):
"""Compute SSP (spatial space projection) vectors on Evoked.
Parameters
----------
evoked : instance of Evoked
The Evoked obtained by averaging the artifact
n_grad : int
Number of vectors for gradiometers
n_mag : int
Number of vectors for magnetometers
n_eeg : int
Number of vectors for EEG channels
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
projs : list
List of projection vectors
See Also
--------
compute_proj_raw, compute_proj_epochs
"""
data = np.dot(evoked.data, evoked.data.T) # compute data covariance
desc_prefix = "%-.3f-%-.3f" % (evoked.times[0], evoked.times[-1])
return _compute_proj(data, evoked.info, n_grad, n_mag, n_eeg, desc_prefix)
@verbose
def compute_proj_raw(raw, start=0, stop=None, duration=1, n_grad=2, n_mag=2,
n_eeg=0, reject=None, flat=None, n_jobs=1, verbose=None):
"""Compute SSP (spatial space projection) vectors on Raw.
Parameters
----------
raw : instance of Raw
A raw object to use the data from.
start : float
Time (in sec) to start computing SSP.
stop : float
Time (in sec) to stop computing SSP.
None will go to the end of the file.
duration : float
Duration (in sec) to chunk data into for SSP
If duration is None, data will not be chunked.
n_grad : int
Number of vectors for gradiometers.
n_mag : int
Number of vectors for magnetometers.
n_eeg : int
Number of vectors for EEG channels.
reject : dict | None
Epoch rejection configuration (see Epochs).
flat : dict | None
Epoch flat configuration (see Epochs).
n_jobs : int
Number of jobs to use to compute covariance.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
projs: list
List of projection vectors
See Also
--------
compute_proj_epochs, compute_proj_evoked
"""
if duration is not None:
events = make_fixed_length_events(raw, 999, start, stop, duration)
picks = pick_types(raw.info, meg=True, eeg=True, eog=True, ecg=True,
emg=True, exclude='bads')
epochs = Epochs(raw, events, None, tmin=0., tmax=duration,
picks=picks, reject=reject, flat=flat)
data = _compute_cov_epochs(epochs, n_jobs)
info = epochs.info
if not stop:
stop = raw.n_times / raw.info['sfreq']
else:
# convert to sample indices
start = max(raw.time_as_index(start)[0], 0)
stop = raw.time_as_index(stop)[0] if stop else raw.n_times
stop = min(stop, raw.n_times)
data, times = raw[:, start:stop]
_check_n_samples(stop - start, data.shape[0])
data = np.dot(data, data.T) # compute data covariance
info = raw.info
# convert back to times
start = start / raw.info['sfreq']
stop = stop / raw.info['sfreq']
desc_prefix = "Raw-%-.3f-%-.3f" % (start, stop)
projs = _compute_proj(data, info, n_grad, n_mag, n_eeg, desc_prefix)
return projs
def sensitivity_map(fwd, projs=None, ch_type='grad', mode='fixed', exclude=[],
verbose=None):
"""Compute sensitivity map.
Such maps are used to know how much sources are visible by a type
of sensor, and how much projections shadow some sources.
Parameters
----------
fwd : Forward
The forward operator.
projs : list
List of projection vectors.
ch_type : 'grad' | 'mag' | 'eeg'
The type of sensors to use.
mode : str
The type of sensitivity map computed. See manual. Should be 'free',
'fixed', 'ratio', 'radiality', 'angle', 'remaining', or 'dampening'
corresponding to the argument --map 1, 2, 3, 4, 5, 6 and 7 of the
command mne_sensitivity_map.
exclude : list of string | str
List of channels to exclude. If empty do not exclude any (default).
If 'bads', exclude channels in fwd['info']['bads'].
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
stc : SourceEstimate | VolSourceEstimate
The sensitivity map as a SourceEstimate or VolSourceEstimate instance
for visualization.
"""
# check strings
if ch_type not in ['eeg', 'grad', 'mag']:
raise ValueError("ch_type should be 'eeg', 'mag' or 'grad (got %s)"
% ch_type)
if mode not in ['free', 'fixed', 'ratio', 'radiality', 'angle',
'remaining', 'dampening']:
raise ValueError('Unknown mode type (got %s)' % mode)
# check forward
if is_fixed_orient(fwd, orig=True):
raise ValueError('fwd should must be computed with free orientation')
# limit forward (this will make a copy of the data for us)
if ch_type == 'eeg':
fwd = pick_types_forward(fwd, meg=False, eeg=True, exclude=exclude)
else:
fwd = pick_types_forward(fwd, meg=ch_type, eeg=False, exclude=exclude)
convert_forward_solution(fwd, surf_ori=True, force_fixed=False,
copy=False, verbose=False)
if not fwd['surf_ori'] or is_fixed_orient(fwd):
raise RuntimeError('Error converting solution, please notify '
'mne-python developers')
gain = fwd['sol']['data']
# Make sure EEG has average
if ch_type == 'eeg':
if projs is None or not _has_eeg_average_ref_proj(projs):
eeg_ave = [make_eeg_average_ref_proj(fwd['info'])]
else:
eeg_ave = []
projs = eeg_ave if projs is None else projs + eeg_ave
# Construct the projector
residual_types = ['angle', 'remaining', 'dampening']
if projs is not None:
proj, ncomp, U = make_projector(projs, fwd['sol']['row_names'],
include_active=True)
# do projection for most types
if mode not in residual_types:
gain = np.dot(proj, gain)
elif ncomp == 0:
raise RuntimeError('No valid projectors found for channel type '
'%s, cannot compute %s' % (ch_type, mode))
# can only run the last couple methods if there are projectors
elif mode in residual_types:
raise ValueError('No projectors used, cannot compute %s' % mode)
n_sensors, n_dipoles = gain.shape
n_locations = n_dipoles // 3
sensitivity_map = np.empty(n_locations)
for k in range(n_locations):
gg = gain[:, 3 * k:3 * (k + 1)]
if mode != 'fixed':
s = linalg.svd(gg, full_matrices=False, compute_uv=False)
if mode == 'free':
sensitivity_map[k] = s[0]
else:
gz = linalg.norm(gg[:, 2]) # the normal component
if mode == 'fixed':
sensitivity_map[k] = gz
elif mode == 'ratio':
sensitivity_map[k] = gz / s[0]
elif mode == 'radiality':
sensitivity_map[k] = 1. - (gz / s[0])
else:
if mode == 'angle':
co = linalg.norm(np.dot(gg[:, 2], U))
sensitivity_map[k] = co / gz
else:
p = linalg.norm(np.dot(proj, gg[:, 2]))
if mode == 'remaining':
sensitivity_map[k] = p / gz
elif mode == 'dampening':
sensitivity_map[k] = 1. - p / gz
else:
raise ValueError('Unknown mode type (got %s)' % mode)
# only normalize fixed and free methods
if mode in ['fixed', 'free']:
sensitivity_map /= np.max(sensitivity_map)
subject = _subject_from_forward(fwd)
if fwd['src'][0]['type'] == 'vol': # volume source space
vertices = fwd['src'][0]['vertno']
SEClass = VolSourceEstimate
else:
vertices = [fwd['src'][0]['vertno'], fwd['src'][1]['vertno']]
SEClass = SourceEstimate
stc = SEClass(sensitivity_map[:, np.newaxis], vertices=vertices, tmin=0,
tstep=1, subject=subject)
return stc