forked from pytorch/FBGEMM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
FbgemmPackMatrixB.h
261 lines (233 loc) · 7.2 KB
/
FbgemmPackMatrixB.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/
#pragma once
#include <assert.h>
#include <cpuinfo.h>
#include <array>
#include <memory>
#include <stdexcept>
#include <typeinfo>
#include <vector>
#include "SimdUtils.h"
#include "Types.h"
#include "Utils.h"
namespace fbgemm {
template <typename T>
struct TypeConverter {
template <typename F>
T operator()(F) const;
};
/// class that performs packing of matrix in
/// row-major format into
/// internal packed blocked-row major format
template <typename T, typename C = TypeConverter<T>>
class PackedGemmMatrixB {
public:
using value_type = T;
using size_type = uint64_t;
// takes smat input mamtrix in row-major format;
// packs it into gemm-friendly blocked format;
// allocate space and sets up all the internal variables;
// also premultiplies by alpha during packing.
// brow_ contains tile size along k dimension
// and also is # of fmas updates into int16 container
// before flushing into fp32.
// the smaller the brow_, the higher overhead
// of flushing is.
// kernel_ncol_blocks is the number of column blocks (in the size of 8 fp16,
// or 128 bit, or 1 xmm register size) in the kernel. Because the batch size
// can be dynamic and we need to prepack the weight matrix B, the internal
// packing layout of the weight matrix and kernel_ncol_blocks have to be
// fixed. We can choose kernel_ncol_blocks = 1 (with kernels of 1x1~14x1
// register layouts), 2 (with kernels of 1x2~6x2 register layout), or 3 (with
// kernels of 1x3~4x3 register layout).
PackedGemmMatrixB(
const matrix_op_t trans,
const int nrow,
const int ncol,
const float alpha,
const float* smat,
const int brow = 512)
: nrow_(nrow), ncol_(ncol), brow_(brow), kernel_ncol_blocks_(2) {
initializeParam();
initializeMemory();
// copy source matrix into packed matrix
this->packFromSrc(trans, alpha, smat);
}
PackedGemmMatrixB(
const int nrow,
const int ncol,
const int brow,
const int last_brow,
const int bcol,
const int nbrow,
const int nbcol,
const uint64_t size)
: nrow_(nrow),
ncol_(ncol),
brow_(brow),
last_brow_(last_brow),
bcol_(bcol),
nbrow_(nbrow),
nbcol_(nbcol),
size_(size),
kernel_ncol_blocks_(2) {
initializeMemory();
}
void initializeParam() {
if (!cpuinfo_initialize()) {
throw std::runtime_error("Failed to initialize cpuinfo!");
}
bcol_ = (isZmm(fbgemmInstructionSet())
? simd_info<inst_set_t::avx512>::WIDTH_32BIT_ELEMS
: simd_info<inst_set_t::avx2>::WIDTH_32BIT_ELEMS) *
kernelNumColBlocks();
// set up internal packing parameters
nbrow_ = (numRows() + blockRowSize() - 1) / blockRowSize();
last_brow_ = ((nrow_ % blockRowSize()) == 0) ? blockRowSize()
: (nrow_ % blockRowSize());
nbcol_ = (numCols() + blockColSize() - 1) / blockColSize();
if (numCols() != blockColSize() * nbcol_) {
#ifdef VLOG
VLOG(0) << "Packer warning: ncol(" << numCols()
<< ") is not a multiple of internal block size ("
<< blockColSize() << ")";
VLOG(0) << "lefover is not super optimized hence overhead will inccur";
#endif
}
}
void setPacked(bool p) {
packed_ = p;
}
bool packed() const {
return packed_;
}
void initializeMemory() {
// allocate and initialize packed memory
size_ = (blockRowSize() * nbrow_) * (blockColSize() * nbcol_);
pmat_ = static_cast<T*>(fbgemmAlignedAlloc(64, matSize() * sizeof(T)));
memset(pmat_, 0, matSize() * sizeof(T));
}
~PackedGemmMatrixB() {
fbgemmAlignedFree(pmat_);
}
void unpackFromSrc(const matrix_op_t trans, T* src_mat) {
bool tr = (trans == matrix_op_t::Transpose);
for (int i = 0; i < numRows(); i++) {
for (int j = 0; j < numCols(); j++) {
pmat_[tr ? i + numRows() * j : i * numCols() + j] = src_mat[addr(i, j)];
}
}
packed_ = false;
}
void unpack(T* origin_buf, const matrix_op_t trans) {
assert(packed_);
bool tr = (trans == matrix_op_t::Transpose);
for (int i = 0; i < numRows(); i++) {
for (int j = 0; j < numCols(); j++) {
origin_buf[tr ? i + numRows() * j : i * numCols() + j] =
pmat_[addr(i, j)];
}
}
}
// protected:
// blocked row-major format address arithmetic
uint64_t addr(const int r_, const int c_) const {
uint64_t r = (uint64_t)r_;
uint64_t c = (uint64_t)c_;
uint64_t block_row_id = r / blockRowSize(),
brow_offset =
(block_row_id * nbcol_) * (blockRowSize() * blockColSize());
uint64_t block_col_id = c / blockColSize(),
bcol_offset = block_col_id *
((static_cast<int64_t>(block_row_id) != nbrow_ - 1)
? (blockRowSize() * blockColSize())
: (last_brow_ * blockColSize()));
uint64_t block_offset = brow_offset + bcol_offset;
uint64_t inblock_offset =
r % blockRowSize() * blockColSize() + c % blockColSize();
uint64_t index = block_offset + inblock_offset;
assert(static_cast<int64_t>(index) < matSize());
return index;
}
void
packFromSrc(const matrix_op_t trans, const float alpha, const float* smat) {
bool tr = (trans == matrix_op_t::Transpose);
// pack
for (int i = 0; i < numRows(); i++) {
for (int j = 0; j < numCols(); j++) {
float src = alpha *
((tr == false) ? smat[i * numCols() + j] : smat[i + numRows() * j]);
pmat_[addr(i, j)] = C()(src);
}
}
packed_ = true;
}
// This function takes in an unpacked T matrix of the same size and
// packs it. There is no floating type conversion.
void packFromSrc(const matrix_op_t trans, const T* smat) {
bool tr = (trans == matrix_op_t::Transpose);
for (int i = 0; i < numRows(); ++i) {
for (int j = 0; j < numCols(); ++j) {
pmat_[addr(i, j)] = smat[tr ? i + numRows() * j : i * numCols() + j];
}
}
packed_ = true;
}
const T& operator()(const int r, const int c) const {
const auto a = addr(r, c);
assert(r < numRows());
assert(c < numCols());
assert(static_cast<int64_t>(a) < this->matSize());
return pmat_[a];
}
int matSize() const {
return size_;
}
int numRows() const {
return nrow_;
}
int numCols() const {
return ncol_;
}
int lastBrow() const {
return last_brow_;
}
int numBrow() const {
return nbrow_;
}
int numBcol() const {
return nbcol_;
}
T* pmat() const {
return pmat_;
}
inline int blockRowSize() const {
return brow_;
}
inline int blockColSize() const {
return bcol_;
}
inline int kernelNumColBlocks() const {
return kernel_ncol_blocks_;
}
const value_type* data() const {
return pmat_;
}
uint64_t size() const {
return size_ / sizeof(value_type);
}
int nrow_, ncol_;
int brow_, last_brow_, bcol_;
int nbrow_, nbcol_;
uint64_t size_;
int kernel_ncol_blocks_;
T* pmat_;
bool packed_{false};
};
} // namespace fbgemm