forked from scylladb/scylladb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkeys.hh
751 lines (632 loc) · 25.9 KB
/
keys.hh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
/*
* Copyright (C) 2015 ScyllaDB
*/
/*
* This file is part of Scylla.
*
* Scylla is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Scylla is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Scylla. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include "schema.hh"
#include "bytes.hh"
#include "types.hh"
#include "compound_compat.hh"
#include "utils/managed_bytes.hh"
#include "hashing.hh"
#include "database_fwd.hh"
//
// This header defines type system for primary key holders.
//
// We distinguish partition keys and clustering keys. API-wise they are almost
// the same, but they're separate type hierarchies.
//
// Clustering keys are further divided into prefixed and non-prefixed (full).
// Non-prefixed keys always have full component set, as defined by schema.
// Prefixed ones can have any number of trailing components missing. They may
// differ in underlying representation.
//
// The main classes are:
//
// partition_key - full partition key
// clustering_key - full clustering key
// clustering_key_prefix - clustering key prefix
//
// These classes wrap only the minimum information required to store the key
// (the key value itself). Any information which can be inferred from schema
// is not stored. Therefore accessors need to be provided with a pointer to
// schema, from which information about structure is extracted.
// Abstracts a view to serialized compound.
template <typename TopLevelView>
class compound_view_wrapper {
protected:
bytes_view _bytes;
protected:
compound_view_wrapper(bytes_view v)
: _bytes(v)
{ }
static inline const auto& get_compound_type(const schema& s) {
return TopLevelView::get_compound_type(s);
}
public:
std::vector<bytes> explode(const schema& s) const {
return get_compound_type(s)->deserialize_value(_bytes);
}
bytes_view representation() const {
return _bytes;
}
struct less_compare {
typename TopLevelView::compound _t;
less_compare(const schema& s) : _t(get_compound_type(s)) {}
bool operator()(const TopLevelView& k1, const TopLevelView& k2) const {
return _t->less(k1.representation(), k2.representation());
}
};
struct hashing {
typename TopLevelView::compound _t;
hashing(const schema& s) : _t(get_compound_type(s)) {}
size_t operator()(const TopLevelView& o) const {
return _t->hash(o.representation());
}
};
struct equality {
typename TopLevelView::compound _t;
equality(const schema& s) : _t(get_compound_type(s)) {}
bool operator()(const TopLevelView& o1, const TopLevelView& o2) const {
return _t->equal(o1.representation(), o2.representation());
}
};
bool equal(const schema& s, const TopLevelView& other) const {
return get_compound_type(s)->equal(representation(), other.representation());
}
// begin() and end() return iterators over components of this compound. The iterator yields a bytes_view to the component.
// The iterators satisfy InputIterator concept.
auto begin() const {
return TopLevelView::compound::element_type::begin(representation());
}
// See begin()
auto end() const {
return TopLevelView::compound::element_type::end(representation());
}
// begin() and end() return iterators over components of this compound. The iterator yields a bytes_view to the component.
// The iterators satisfy InputIterator concept.
auto begin(const schema& s) const {
return begin();
}
// See begin()
auto end(const schema& s) const {
return end();
}
bytes_view get_component(const schema& s, size_t idx) const {
auto it = begin(s);
std::advance(it, idx);
return *it;
}
// Returns a range of bytes_view
auto components() const {
return TopLevelView::compound::element_type::components(representation());
}
// Returns a range of bytes_view
auto components(const schema& s) const {
return components();
}
template<typename Hasher>
void feed_hash(Hasher& h, const schema& s) const {
for (bytes_view v : components(s)) {
::feed_hash(h, v);
}
}
};
template <typename TopLevel, typename TopLevelView>
class compound_wrapper {
protected:
managed_bytes _bytes;
protected:
compound_wrapper(managed_bytes&& b) : _bytes(std::move(b)) {}
static inline const auto& get_compound_type(const schema& s) {
return TopLevel::get_compound_type(s);
}
public:
static TopLevel make_empty() {
return from_exploded(std::vector<bytes>());
}
static TopLevel make_empty(const schema&) {
return make_empty();
}
template<typename RangeOfSerializedComponents>
static TopLevel from_exploded(RangeOfSerializedComponents&& v) {
return TopLevel::from_range(std::forward<RangeOfSerializedComponents>(v));
}
static TopLevel from_exploded(const schema& s, const std::vector<bytes>& v) {
return from_exploded(v);
}
// We don't allow optional values, but provide this method as an efficient adaptor
static TopLevel from_optional_exploded(const schema& s, const std::vector<bytes_opt>& v) {
return TopLevel::from_bytes(get_compound_type(s)->serialize_optionals(v));
}
static TopLevel from_deeply_exploded(const schema& s, const std::vector<data_value>& v) {
return TopLevel::from_bytes(get_compound_type(s)->serialize_value_deep(v));
}
static TopLevel from_single_value(const schema& s, bytes v) {
return TopLevel::from_bytes(get_compound_type(s)->serialize_single(std::move(v)));
}
template <typename T>
static
TopLevel from_singular(const schema& s, const T& v) {
auto ct = get_compound_type(s);
if (!ct->is_singular()) {
throw std::invalid_argument("compound is not singular");
}
auto type = ct->types()[0];
return from_single_value(s, type->decompose(v));
}
TopLevelView view() const {
return TopLevelView::from_bytes(_bytes);
}
operator TopLevelView() const {
return view();
}
// FIXME: return views
std::vector<bytes> explode(const schema& s) const {
return get_compound_type(s)->deserialize_value(_bytes);
}
std::vector<bytes> explode() const {
std::vector<bytes> result;
for (bytes_view c : components()) {
result.emplace_back(to_bytes(c));
}
return result;
}
struct tri_compare {
typename TopLevel::compound _t;
tri_compare(const schema& s) : _t(get_compound_type(s)) {}
int operator()(const TopLevel& k1, const TopLevel& k2) const {
return _t->compare(k1.representation(), k2.representation());
}
int operator()(const TopLevelView& k1, const TopLevel& k2) const {
return _t->compare(k1.representation(), k2.representation());
}
int operator()(const TopLevel& k1, const TopLevelView& k2) const {
return _t->compare(k1.representation(), k2.representation());
}
};
struct less_compare {
typename TopLevel::compound _t;
less_compare(const schema& s) : _t(get_compound_type(s)) {}
bool operator()(const TopLevel& k1, const TopLevel& k2) const {
return _t->less(k1.representation(), k2.representation());
}
bool operator()(const TopLevelView& k1, const TopLevel& k2) const {
return _t->less(k1.representation(), k2.representation());
}
bool operator()(const TopLevel& k1, const TopLevelView& k2) const {
return _t->less(k1.representation(), k2.representation());
}
};
struct hashing {
typename TopLevel::compound _t;
hashing(const schema& s) : _t(get_compound_type(s)) {}
size_t operator()(const TopLevel& o) const {
return _t->hash(o);
}
};
struct equality {
typename TopLevel::compound _t;
equality(const schema& s) : _t(get_compound_type(s)) {}
bool operator()(const TopLevel& o1, const TopLevel& o2) const {
return _t->equal(o1.representation(), o2.representation());
}
bool operator()(const TopLevelView& o1, const TopLevel& o2) const {
return _t->equal(o1.representation(), o2.representation());
}
bool operator()(const TopLevel& o1, const TopLevelView& o2) const {
return _t->equal(o1.representation(), o2.representation());
}
};
bool equal(const schema& s, const TopLevel& other) const {
return get_compound_type(s)->equal(representation(), other.representation());
}
bool equal(const schema& s, const TopLevelView& other) const {
return get_compound_type(s)->equal(representation(), other.representation());
}
operator bytes_view() const {
return _bytes;
}
const managed_bytes& representation() const {
return _bytes;
}
// begin() and end() return iterators over components of this compound. The iterator yields a bytes_view to the component.
// The iterators satisfy InputIterator concept.
auto begin(const schema& s) const {
return get_compound_type(s)->begin(_bytes);
}
// See begin()
auto end(const schema& s) const {
return get_compound_type(s)->end(_bytes);
}
// Returns a range of bytes_view
auto components() const {
return TopLevelView::compound::element_type::components(representation());
}
// Returns a range of bytes_view
auto components(const schema& s) const {
return components();
}
bytes_view get_component(const schema& s, size_t idx) const {
auto it = begin(s);
std::advance(it, idx);
return *it;
}
template<typename Hasher>
void feed_hash(Hasher& h, const schema& s) const {
view().feed_hash(h, s);
}
// Returns the number of components of this compound.
size_t size(const schema& s) const {
return std::distance(begin(s), end(s));
}
size_t external_memory_usage() const {
return _bytes.external_memory_usage();
}
size_t memory_usage() const {
return sizeof(*this) + external_memory_usage();
}
};
template <typename TopLevel, typename PrefixTopLevel>
class prefix_view_on_full_compound {
public:
using iterator = typename compound_type<allow_prefixes::no>::iterator;
private:
bytes_view _b;
unsigned _prefix_len;
iterator _begin;
iterator _end;
public:
prefix_view_on_full_compound(const schema& s, bytes_view b, unsigned prefix_len)
: _b(b)
, _prefix_len(prefix_len)
, _begin(TopLevel::get_compound_type(s)->begin(_b))
, _end(_begin)
{
std::advance(_end, prefix_len);
}
iterator begin() const { return _begin; }
iterator end() const { return _end; }
struct less_compare_with_prefix {
typename PrefixTopLevel::compound prefix_type;
less_compare_with_prefix(const schema& s)
: prefix_type(PrefixTopLevel::get_compound_type(s))
{ }
bool operator()(const prefix_view_on_full_compound& k1, const PrefixTopLevel& k2) const {
return lexicographical_tri_compare(
prefix_type->types().begin(), prefix_type->types().end(),
k1.begin(), k1.end(),
prefix_type->begin(k2), prefix_type->end(k2),
tri_compare) < 0;
}
bool operator()(const PrefixTopLevel& k1, const prefix_view_on_full_compound& k2) const {
return lexicographical_tri_compare(
prefix_type->types().begin(), prefix_type->types().end(),
prefix_type->begin(k1), prefix_type->end(k1),
k2.begin(), k2.end(),
tri_compare) < 0;
}
};
};
template <typename TopLevel>
class prefix_view_on_prefix_compound {
public:
using iterator = typename compound_type<allow_prefixes::yes>::iterator;
private:
bytes_view _b;
unsigned _prefix_len;
iterator _begin;
iterator _end;
public:
prefix_view_on_prefix_compound(const schema& s, bytes_view b, unsigned prefix_len)
: _b(b)
, _prefix_len(prefix_len)
, _begin(TopLevel::get_compound_type(s)->begin(_b))
, _end(_begin)
{
std::advance(_end, prefix_len);
}
iterator begin() const { return _begin; }
iterator end() const { return _end; }
struct less_compare_with_prefix {
typename TopLevel::compound prefix_type;
less_compare_with_prefix(const schema& s)
: prefix_type(TopLevel::get_compound_type(s))
{ }
bool operator()(const prefix_view_on_prefix_compound& k1, const TopLevel& k2) const {
return lexicographical_tri_compare(
prefix_type->types().begin(), prefix_type->types().end(),
k1.begin(), k1.end(),
prefix_type->begin(k2), prefix_type->end(k2),
tri_compare) < 0;
}
bool operator()(const TopLevel& k1, const prefix_view_on_prefix_compound& k2) const {
return lexicographical_tri_compare(
prefix_type->types().begin(), prefix_type->types().end(),
prefix_type->begin(k1), prefix_type->end(k1),
k2.begin(), k2.end(),
tri_compare) < 0;
}
};
};
template <typename TopLevel, typename TopLevelView, typename PrefixTopLevel>
class prefixable_full_compound : public compound_wrapper<TopLevel, TopLevelView> {
using base = compound_wrapper<TopLevel, TopLevelView>;
protected:
prefixable_full_compound(bytes&& b) : base(std::move(b)) {}
public:
using prefix_view_type = prefix_view_on_full_compound<TopLevel, PrefixTopLevel>;
bool is_prefixed_by(const schema& s, const PrefixTopLevel& prefix) const {
auto t = base::get_compound_type(s);
auto prefix_type = PrefixTopLevel::get_compound_type(s);
return ::is_prefixed_by(t->types().begin(),
t->begin(*this), t->end(*this),
prefix_type->begin(prefix), prefix_type->end(prefix),
::equal);
}
struct less_compare_with_prefix {
typename PrefixTopLevel::compound prefix_type;
typename TopLevel::compound full_type;
less_compare_with_prefix(const schema& s)
: prefix_type(PrefixTopLevel::get_compound_type(s))
, full_type(TopLevel::get_compound_type(s))
{ }
bool operator()(const TopLevel& k1, const PrefixTopLevel& k2) const {
return lexicographical_tri_compare(
prefix_type->types().begin(), prefix_type->types().end(),
full_type->begin(k1), full_type->end(k1),
prefix_type->begin(k2), prefix_type->end(k2),
tri_compare) < 0;
}
bool operator()(const PrefixTopLevel& k1, const TopLevel& k2) const {
return lexicographical_tri_compare(
prefix_type->types().begin(), prefix_type->types().end(),
prefix_type->begin(k1), prefix_type->end(k1),
full_type->begin(k2), full_type->end(k2),
tri_compare) < 0;
}
};
// In prefix equality two sequences are equal if any of them is a prefix
// of the other. Otherwise lexicographical ordering is applied.
// Note: full compounds sorted according to lexicographical ordering are also
// sorted according to prefix equality ordering.
struct prefix_equality_less_compare {
typename PrefixTopLevel::compound prefix_type;
typename TopLevel::compound full_type;
prefix_equality_less_compare(const schema& s)
: prefix_type(PrefixTopLevel::get_compound_type(s))
, full_type(TopLevel::get_compound_type(s))
{ }
bool operator()(const TopLevel& k1, const PrefixTopLevel& k2) const {
return prefix_equality_tri_compare(prefix_type->types().begin(),
full_type->begin(k1), full_type->end(k1),
prefix_type->begin(k2), prefix_type->end(k2),
tri_compare) < 0;
}
bool operator()(const PrefixTopLevel& k1, const TopLevel& k2) const {
return prefix_equality_tri_compare(prefix_type->types().begin(),
prefix_type->begin(k1), prefix_type->end(k1),
full_type->begin(k2), full_type->end(k2),
tri_compare) < 0;
}
};
prefix_view_type prefix_view(const schema& s, unsigned prefix_len) const {
return { s, this->representation(), prefix_len };
}
};
template <typename TopLevel, typename FullTopLevel>
class prefix_compound_view_wrapper : public compound_view_wrapper<TopLevel> {
protected:
prefix_compound_view_wrapper(bytes_view v)
: compound_view_wrapper<TopLevel>(v)
{ }
};
template <typename TopLevel, typename TopLevelView, typename FullTopLevel>
class prefix_compound_wrapper : public compound_wrapper<TopLevel, TopLevelView> {
using base = compound_wrapper<TopLevel, TopLevelView>;
protected:
prefix_compound_wrapper(managed_bytes&& b) : base(std::move(b)) {}
public:
using prefix_view_type = prefix_view_on_prefix_compound<TopLevel>;
prefix_view_type prefix_view(const schema& s, unsigned prefix_len) const {
return { s, this->representation(), prefix_len };
}
bool is_full(const schema& s) const {
return TopLevel::get_compound_type(s)->is_full(base::_bytes);
}
// Can be called only if is_full()
FullTopLevel to_full(const schema& s) const {
return FullTopLevel::from_exploded(s, base::explode(s));
}
bool is_prefixed_by(const schema& s, const TopLevel& prefix) const {
auto t = base::get_compound_type(s);
return ::is_prefixed_by(t->types().begin(),
t->begin(*this), t->end(*this),
t->begin(prefix), t->end(prefix),
equal);
}
// In prefix equality two sequences are equal if any of them is a prefix
// of the other. Otherwise lexicographical ordering is applied.
// Note: full compounds sorted according to lexicographical ordering are also
// sorted according to prefix equality ordering.
struct prefix_equality_less_compare {
typename TopLevel::compound prefix_type;
prefix_equality_less_compare(const schema& s)
: prefix_type(TopLevel::get_compound_type(s))
{ }
bool operator()(const TopLevel& k1, const TopLevel& k2) const {
return prefix_equality_tri_compare(prefix_type->types().begin(),
prefix_type->begin(k1), prefix_type->end(k1),
prefix_type->begin(k2), prefix_type->end(k2),
tri_compare) < 0;
}
};
// See prefix_equality_less_compare.
struct prefix_equal_tri_compare {
typename TopLevel::compound prefix_type;
prefix_equal_tri_compare(const schema& s)
: prefix_type(TopLevel::get_compound_type(s))
{ }
int operator()(const TopLevel& k1, const TopLevel& k2) const {
return prefix_equality_tri_compare(prefix_type->types().begin(),
prefix_type->begin(k1), prefix_type->end(k1),
prefix_type->begin(k2), prefix_type->end(k2),
tri_compare);
}
};
};
class partition_key_view : public compound_view_wrapper<partition_key_view> {
public:
using c_type = compound_type<allow_prefixes::no>;
private:
partition_key_view(bytes_view v)
: compound_view_wrapper<partition_key_view>(v)
{ }
public:
using compound = lw_shared_ptr<c_type>;
static partition_key_view from_bytes(bytes_view v) {
return { v };
}
static const compound& get_compound_type(const schema& s) {
return s.partition_key_type();
}
// Returns key's representation which is compatible with Origin.
// The result is valid as long as the schema is live.
const legacy_compound_view<c_type> legacy_form(const schema& s) const;
// A trichotomic comparator for ordering compatible with Origin.
int legacy_tri_compare(const schema& s, partition_key_view o) const;
// Checks if keys are equal in a way which is compatible with Origin.
bool legacy_equal(const schema& s, partition_key_view o) const {
return legacy_tri_compare(s, o) == 0;
}
// A trichotomic comparator which orders keys according to their ordering on the ring.
int ring_order_tri_compare(const schema& s, partition_key_view o) const;
friend std::ostream& operator<<(std::ostream& out, const partition_key_view& pk);
};
class partition_key : public compound_wrapper<partition_key, partition_key_view> {
explicit partition_key(managed_bytes&& b)
: compound_wrapper<partition_key, partition_key_view>(std::move(b))
{ }
public:
using c_type = compound_type<allow_prefixes::no>;
template<typename RangeOfSerializedComponents>
static partition_key from_range(RangeOfSerializedComponents&& v) {
return partition_key(managed_bytes(c_type::serialize_value(std::forward<RangeOfSerializedComponents>(v))));
}
partition_key(std::vector<bytes> v)
: compound_wrapper(managed_bytes(c_type::serialize_value(std::move(v))))
{ }
partition_key(partition_key&& v) = default;
partition_key(const partition_key& v) = default;
partition_key(partition_key& v) = default;
partition_key& operator=(const partition_key&) = default;
partition_key& operator=(partition_key&) = default;
partition_key& operator=(partition_key&&) = default;
partition_key(partition_key_view key)
: partition_key(managed_bytes(key.representation()))
{ }
using compound = lw_shared_ptr<c_type>;
static partition_key from_bytes(bytes_view b) {
return partition_key(managed_bytes(b));
}
static const compound& get_compound_type(const schema& s) {
return s.partition_key_type();
}
// Returns key's representation which is compatible with Origin.
// The result is valid as long as the schema is live.
const legacy_compound_view<c_type> legacy_form(const schema& s) const {
return view().legacy_form(s);
}
// A trichotomic comparator for ordering compatible with Origin.
int legacy_tri_compare(const schema& s, const partition_key& o) const {
return view().legacy_tri_compare(s, o);
}
// Checks if keys are equal in a way which is compatible with Origin.
bool legacy_equal(const schema& s, const partition_key& o) const {
return view().legacy_equal(s, o);
}
void validate(const schema& s) const {
return s.partition_key_type()->validate(representation());
}
friend std::ostream& operator<<(std::ostream& out, const partition_key& pk);
};
class exploded_clustering_prefix {
std::vector<bytes> _v;
public:
exploded_clustering_prefix(std::vector<bytes>&& v) : _v(std::move(v)) {}
exploded_clustering_prefix() {}
size_t size() const {
return _v.size();
}
auto const& components() const {
return _v;
}
explicit operator bool() const {
return !_v.empty();
}
bool is_full(const schema& s) const {
return _v.size() == s.clustering_key_size();
}
friend std::ostream& operator<<(std::ostream& os, const exploded_clustering_prefix& ecp);
};
class clustering_key_prefix_view : public prefix_compound_view_wrapper<clustering_key_prefix_view, clustering_key> {
clustering_key_prefix_view(bytes_view v)
: prefix_compound_view_wrapper<clustering_key_prefix_view, clustering_key>(v)
{ }
public:
static clustering_key_prefix_view from_bytes(bytes_view v) {
return { v };
}
using compound = lw_shared_ptr<compound_type<allow_prefixes::yes>>;
static const compound& get_compound_type(const schema& s) {
return s.clustering_key_prefix_type();
}
};
class clustering_key_prefix : public prefix_compound_wrapper<clustering_key_prefix, clustering_key_prefix_view, clustering_key> {
explicit clustering_key_prefix(managed_bytes&& b)
: prefix_compound_wrapper<clustering_key_prefix, clustering_key_prefix_view, clustering_key>(std::move(b))
{ }
public:
template<typename RangeOfSerializedComponents>
static clustering_key_prefix from_range(RangeOfSerializedComponents&& v) {
return clustering_key_prefix(compound::element_type::serialize_value(std::forward<RangeOfSerializedComponents>(v)));
}
clustering_key_prefix(std::vector<bytes> v)
: prefix_compound_wrapper(compound::element_type::serialize_value(std::move(v)))
{ }
clustering_key_prefix(clustering_key_prefix&& v) = default;
clustering_key_prefix(const clustering_key_prefix& v) = default;
clustering_key_prefix(clustering_key_prefix& v) = default;
clustering_key_prefix& operator=(const clustering_key_prefix&) = default;
clustering_key_prefix& operator=(clustering_key_prefix&) = default;
clustering_key_prefix& operator=(clustering_key_prefix&&) = default;
clustering_key_prefix(clustering_key_prefix_view v)
: clustering_key_prefix(managed_bytes(v.representation()))
{ }
using compound = lw_shared_ptr<compound_type<allow_prefixes::yes>>;
static clustering_key_prefix from_bytes(bytes_view b) {
return clustering_key_prefix(managed_bytes(b));
}
static const compound& get_compound_type(const schema& s) {
return s.clustering_key_prefix_type();
}
static clustering_key_prefix from_clustering_prefix(const schema& s, const exploded_clustering_prefix& prefix) {
return from_exploded(s, prefix.components());
}
friend std::ostream& operator<<(std::ostream& out, const clustering_key_prefix& ckp);
};