forked from lestrrat-go/jwx
-
Notifications
You must be signed in to change notification settings - Fork 0
/
jwk.go
729 lines (667 loc) · 20.8 KB
/
jwk.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
//go:generate ../tools/cmd/genjwk.sh
// Package jwk implements JWK as described in https://tools.ietf.org/html/rfc7517
package jwk
import (
"bytes"
"crypto"
"crypto/ecdsa"
"crypto/ed25519"
"crypto/elliptic"
"crypto/rsa"
"crypto/x509"
"encoding/pem"
"fmt"
"io"
"math/big"
"github.com/lestrrat-go/jwx/v2/internal/base64"
"github.com/lestrrat-go/jwx/v2/internal/ecutil"
"github.com/lestrrat-go/jwx/v2/internal/json"
"github.com/lestrrat-go/jwx/v2/jwa"
"github.com/lestrrat-go/jwx/v2/x25519"
)
var registry = json.NewRegistry()
func bigIntToBytes(n *big.Int) ([]byte, error) {
if n == nil {
return nil, fmt.Errorf(`invalid *big.Int value`)
}
return n.Bytes(), nil
}
// FromRaw creates a jwk.Key from the given key (RSA/ECDSA/symmetric keys).
//
// The constructor auto-detects the type of key to be instantiated
// based on the input type:
//
// - "crypto/rsa".PrivateKey and "crypto/rsa".PublicKey creates an RSA based key
// - "crypto/ecdsa".PrivateKey and "crypto/ecdsa".PublicKey creates an EC based key
// - "crypto/ed25519".PrivateKey and "crypto/ed25519".PublicKey creates an OKP based key
// - []byte creates a symmetric key
func FromRaw(key interface{}) (Key, error) {
if key == nil {
return nil, fmt.Errorf(`jwk.New requires a non-nil key`)
}
var ptr interface{}
switch v := key.(type) {
case rsa.PrivateKey:
ptr = &v
case rsa.PublicKey:
ptr = &v
case ecdsa.PrivateKey:
ptr = &v
case ecdsa.PublicKey:
ptr = &v
default:
ptr = v
}
switch rawKey := ptr.(type) {
case *rsa.PrivateKey:
k := newRSAPrivateKey()
if err := k.FromRaw(rawKey); err != nil {
return nil, fmt.Errorf(`failed to initialize %T from %T: %w`, k, rawKey, err)
}
return k, nil
case *rsa.PublicKey:
k := newRSAPublicKey()
if err := k.FromRaw(rawKey); err != nil {
return nil, fmt.Errorf(`failed to initialize %T from %T: %w`, k, rawKey, err)
}
return k, nil
case *ecdsa.PrivateKey:
k := newECDSAPrivateKey()
if err := k.FromRaw(rawKey); err != nil {
return nil, fmt.Errorf(`failed to initialize %T from %T: %w`, k, rawKey, err)
}
return k, nil
case *ecdsa.PublicKey:
k := newECDSAPublicKey()
if err := k.FromRaw(rawKey); err != nil {
return nil, fmt.Errorf(`failed to initialize %T from %T: %w`, k, rawKey, err)
}
return k, nil
case ed25519.PrivateKey:
k := newOKPPrivateKey()
if err := k.FromRaw(rawKey); err != nil {
return nil, fmt.Errorf(`failed to initialize %T from %T: %w`, k, rawKey, err)
}
return k, nil
case ed25519.PublicKey:
k := newOKPPublicKey()
if err := k.FromRaw(rawKey); err != nil {
return nil, fmt.Errorf(`failed to initialize %T from %T: %w`, k, rawKey, err)
}
return k, nil
case x25519.PrivateKey:
k := newOKPPrivateKey()
if err := k.FromRaw(rawKey); err != nil {
return nil, fmt.Errorf(`failed to initialize %T from %T: %w`, k, rawKey, err)
}
return k, nil
case x25519.PublicKey:
k := newOKPPublicKey()
if err := k.FromRaw(rawKey); err != nil {
return nil, fmt.Errorf(`failed to initialize %T from %T: %w`, k, rawKey, err)
}
return k, nil
case []byte:
k := newSymmetricKey()
if err := k.FromRaw(rawKey); err != nil {
return nil, fmt.Errorf(`failed to initialize %T from %T: %w`, k, rawKey, err)
}
return k, nil
default:
return nil, fmt.Errorf(`invalid key type '%T' for jwk.New`, key)
}
}
// PublicSetOf returns a new jwk.Set consisting of
// public keys of the keys contained in the set.
//
// This is useful when you are generating a set of private keys, and
// you want to generate the corresponding public versions for the
// users to verify with.
//
// Be aware that all fields will be copied onto the new public key. It is the caller's
// responsibility to remove any fields, if necessary.
func PublicSetOf(v Set) (Set, error) {
newSet := NewSet()
n := v.Len()
for i := 0; i < n; i++ {
k, ok := v.Key(i)
if !ok {
return nil, fmt.Errorf(`key not found`)
}
pubKey, err := PublicKeyOf(k)
if err != nil {
return nil, fmt.Errorf(`failed to get public key of %T: %w`, k, err)
}
if err := newSet.AddKey(pubKey); err != nil {
return nil, fmt.Errorf(`failed to add key to public key set: %w`, err)
}
}
return newSet, nil
}
// PublicKeyOf returns the corresponding public version of the jwk.Key.
// If `v` is a SymmetricKey, then the same value is returned.
// If `v` is already a public key, the key itself is returned.
//
// If `v` is a private key type that has a `PublicKey()` method, be aware
// that all fields will be copied onto the new public key. It is the caller's
// responsibility to remove any fields, if necessary
//
// If `v` is a raw key, the key is first converted to a `jwk.Key`
func PublicKeyOf(v interface{}) (Key, error) {
// This should catch all jwk.Key instances
if pk, ok := v.(PublicKeyer); ok {
return pk.PublicKey()
}
jk, err := FromRaw(v)
if err != nil {
return nil, fmt.Errorf(`failed to convert key into JWK: %w`, err)
}
return jk.PublicKey()
}
// PublicRawKeyOf returns the corresponding public key of the given
// value `v` (e.g. given *rsa.PrivateKey, *rsa.PublicKey is returned)
// If `v` is already a public key, the key itself is returned.
//
// The returned value will always be a pointer to the public key,
// except when a []byte (e.g. symmetric key, ed25519 key) is passed to `v`.
// In this case, the same []byte value is returned.
func PublicRawKeyOf(v interface{}) (interface{}, error) {
if pk, ok := v.(PublicKeyer); ok {
pubk, err := pk.PublicKey()
if err != nil {
return nil, fmt.Errorf(`failed to obtain public key from %T: %w`, v, err)
}
var raw interface{}
if err := pubk.Raw(&raw); err != nil {
return nil, fmt.Errorf(`failed to obtain raw key from %T: %w`, pubk, err)
}
return raw, nil
}
// This may be a silly idea, but if the user gave us a non-pointer value...
var ptr interface{}
switch v := v.(type) {
case rsa.PrivateKey:
ptr = &v
case rsa.PublicKey:
ptr = &v
case ecdsa.PrivateKey:
ptr = &v
case ecdsa.PublicKey:
ptr = &v
default:
ptr = v
}
switch x := ptr.(type) {
case *rsa.PrivateKey:
return &x.PublicKey, nil
case *rsa.PublicKey:
return x, nil
case *ecdsa.PrivateKey:
return &x.PublicKey, nil
case *ecdsa.PublicKey:
return x, nil
case ed25519.PrivateKey:
return x.Public(), nil
case ed25519.PublicKey:
return x, nil
case x25519.PrivateKey:
return x.Public(), nil
case x25519.PublicKey:
return x, nil
case []byte:
return x, nil
default:
return nil, fmt.Errorf(`invalid key type passed to PublicKeyOf (%T)`, v)
}
}
const (
pmPrivateKey = `PRIVATE KEY`
pmPublicKey = `PUBLIC KEY`
pmECPrivateKey = `EC PRIVATE KEY`
pmRSAPublicKey = `RSA PUBLIC KEY`
pmRSAPrivateKey = `RSA PRIVATE KEY`
)
// EncodeX509 encodes the key into a byte sequence in ASN.1 DER format
// suitable for to be PEM encoded. The key can be a jwk.Key or a raw key
// instance, but it must be one of the types supported by `x509` package.
//
// This function will try to do the right thing depending on the key type
// (i.e. switch between `x509.MarshalPKCS1PRivateKey` and `x509.MarshalECPrivateKey`),
// but for public keys, it will always use `x509.MarshalPKIXPublicKey`.
// Please manually perform the encoding if you need more fine grained control
//
// The first return value is the name that can be used for `(pem.Block).Type`.
// The second return value is the encoded byte sequence.
func EncodeX509(v interface{}) (string, []byte, error) {
// we can't import jwk, so just use the interface
if key, ok := v.(interface{ Raw(interface{}) error }); ok {
var raw interface{}
if err := key.Raw(&raw); err != nil {
return "", nil, fmt.Errorf(`failed to get raw key out of %T: %w`, key, err)
}
v = raw
}
// Try to convert it into a certificate
switch v := v.(type) {
case *rsa.PrivateKey:
return pmRSAPrivateKey, x509.MarshalPKCS1PrivateKey(v), nil
case *ecdsa.PrivateKey:
marshaled, err := x509.MarshalECPrivateKey(v)
if err != nil {
return "", nil, err
}
return pmECPrivateKey, marshaled, nil
case ed25519.PrivateKey:
marshaled, err := x509.MarshalPKCS8PrivateKey(v)
if err != nil {
return "", nil, err
}
return pmPrivateKey, marshaled, nil
case *rsa.PublicKey, *ecdsa.PublicKey, ed25519.PublicKey:
marshaled, err := x509.MarshalPKIXPublicKey(v)
if err != nil {
return "", nil, err
}
return pmPublicKey, marshaled, nil
default:
return "", nil, fmt.Errorf(`unsupported type %T for ASN.1 DER encoding`, v)
}
}
// EncodePEM encodes the key into a PEM encoded ASN.1 DER format.
// The key can be a jwk.Key or a raw key instance, but it must be one of
// the types supported by `x509` package.
//
// Internally, it uses the same routine as `jwk.EncodeX509()`, and therefore
// the same caveats apply
func EncodePEM(v interface{}) ([]byte, error) {
typ, marshaled, err := EncodeX509(v)
if err != nil {
return nil, fmt.Errorf(`failed to encode key in x509: %w`, err)
}
block := &pem.Block{
Type: typ,
Bytes: marshaled,
}
return pem.EncodeToMemory(block), nil
}
// DecodePEM decodes a key in PEM encoded ASN.1 DER format.
// and returns a raw key
func DecodePEM(src []byte) (interface{}, []byte, error) {
block, rest := pem.Decode(src)
if block == nil {
return nil, nil, fmt.Errorf(`failed to decode PEM data`)
}
switch block.Type {
// Handle the semi-obvious cases
case pmRSAPrivateKey:
key, err := x509.ParsePKCS1PrivateKey(block.Bytes)
if err != nil {
return nil, nil, fmt.Errorf(`failed to parse PKCS1 private key: %w`, err)
}
return key, rest, nil
case pmRSAPublicKey:
key, err := x509.ParsePKCS1PublicKey(block.Bytes)
if err != nil {
return nil, nil, fmt.Errorf(`failed to parse PKCS1 public key: %w`, err)
}
return key, rest, nil
case pmECPrivateKey:
key, err := x509.ParseECPrivateKey(block.Bytes)
if err != nil {
return nil, nil, fmt.Errorf(`failed to parse EC private key: %w`, err)
}
return key, rest, nil
case pmPublicKey:
// XXX *could* return dsa.PublicKey
key, err := x509.ParsePKIXPublicKey(block.Bytes)
if err != nil {
return nil, nil, fmt.Errorf(`failed to parse PKIX public key: %w`, err)
}
return key, rest, nil
case pmPrivateKey:
key, err := x509.ParsePKCS8PrivateKey(block.Bytes)
if err != nil {
return nil, nil, fmt.Errorf(`failed to parse PKCS8 private key: %w`, err)
}
return key, rest, nil
case "CERTIFICATE":
cert, err := x509.ParseCertificate(block.Bytes)
if err != nil {
return nil, nil, fmt.Errorf(`failed to parse certificate: %w`, err)
}
return cert.PublicKey, rest, nil
default:
return nil, nil, fmt.Errorf(`invalid PEM block type %s`, block.Type)
}
}
// ParseRawKey is a combination of ParseKey and Raw. It parses a single JWK key,
// and assigns the "raw" key to the given parameter. The key must either be
// a pointer to an empty interface, or a pointer to the actual raw key type
// such as *rsa.PrivateKey, *ecdsa.PublicKey, *[]byte, etc.
func ParseRawKey(data []byte, rawkey interface{}) error {
key, err := ParseKey(data)
if err != nil {
return fmt.Errorf(`failed to parse key: %w`, err)
}
if err := key.Raw(rawkey); err != nil {
return fmt.Errorf(`failed to assign to raw key variable: %w`, err)
}
return nil
}
type setDecodeCtx struct {
json.DecodeCtx
ignoreParseError bool
}
func (ctx *setDecodeCtx) IgnoreParseError() bool {
return ctx.ignoreParseError
}
// ParseKey parses a single key JWK. Unlike `jwk.Parse` this method will
// report failure if you attempt to pass a JWK set. Only use this function
// when you know that the data is a single JWK.
//
// Given a WithPEM(true) option, this function assumes that the given input
// is PEM encoded ASN.1 DER format key.
//
// Note that a successful parsing of any type of key does NOT necessarily
// guarantee a valid key. For example, no checks against expiration dates
// are performed for certificate expiration, no checks against missing
// parameters are performed, etc.
func ParseKey(data []byte, options ...ParseOption) (Key, error) {
var parsePEM bool
var localReg *json.Registry
for _, option := range options {
//nolint:forcetypeassert
switch option.Ident() {
case identPEM{}:
parsePEM = option.Value().(bool)
case identLocalRegistry{}:
// in reality you can only pass either withLocalRegistry or
// WithTypedField, but since withLocalRegistry is used only by us,
// we skip checking
localReg = option.Value().(*json.Registry)
case identTypedField{}:
pair := option.Value().(typedFieldPair)
if localReg == nil {
localReg = json.NewRegistry()
}
localReg.Register(pair.Name, pair.Value)
case identIgnoreParseError{}:
return nil, fmt.Errorf(`jwk.WithIgnoreParseError() cannot be used for ParseKey()`)
}
}
if parsePEM {
raw, _, err := DecodePEM(data)
if err != nil {
return nil, fmt.Errorf(`failed to parse PEM encoded key: %w`, err)
}
return FromRaw(raw)
}
var hint struct {
Kty string `json:"kty"`
D json.RawMessage `json:"d"`
}
if err := json.Unmarshal(data, &hint); err != nil {
return nil, fmt.Errorf(`failed to unmarshal JSON into key hint: %w`, err)
}
var key Key
switch jwa.KeyType(hint.Kty) {
case jwa.RSA:
if len(hint.D) > 0 {
key = newRSAPrivateKey()
} else {
key = newRSAPublicKey()
}
case jwa.EC:
if len(hint.D) > 0 {
key = newECDSAPrivateKey()
} else {
key = newECDSAPublicKey()
}
case jwa.OctetSeq:
key = newSymmetricKey()
case jwa.OKP:
if len(hint.D) > 0 {
key = newOKPPrivateKey()
} else {
key = newOKPPublicKey()
}
default:
return nil, fmt.Errorf(`invalid key type from JSON (%s)`, hint.Kty)
}
if localReg != nil {
dcKey, ok := key.(json.DecodeCtxContainer)
if !ok {
return nil, fmt.Errorf(`typed field was requested, but the key (%T) does not support DecodeCtx`, key)
}
dc := json.NewDecodeCtx(localReg)
dcKey.SetDecodeCtx(dc)
defer func() { dcKey.SetDecodeCtx(nil) }()
}
if err := json.Unmarshal(data, key); err != nil {
return nil, fmt.Errorf(`failed to unmarshal JSON into key (%T): %w`, key, err)
}
return key, nil
}
// Parse parses JWK from the incoming []byte.
//
// For JWK sets, this is a convenience function. You could just as well
// call `json.Unmarshal` against an empty set created by `jwk.NewSet()`
// to parse a JSON buffer into a `jwk.Set`.
//
// This function exists because many times the user does not know before hand
// if a JWK(s) resource at a remote location contains a single JWK key or
// a JWK set, and `jwk.Parse()` can handle either case, returning a JWK Set
// even if the data only contains a single JWK key
//
// If you are looking for more information on how JWKs are parsed, or if
// you know for sure that you have a single key, please see the documentation
// for `jwk.ParseKey()`.
func Parse(src []byte, options ...ParseOption) (Set, error) {
var parsePEM bool
var localReg *json.Registry
var ignoreParseError bool
for _, option := range options {
//nolint:forcetypeassert
switch option.Ident() {
case identPEM{}:
parsePEM = option.Value().(bool)
case identIgnoreParseError{}:
ignoreParseError = option.Value().(bool)
case identTypedField{}:
pair := option.Value().(typedFieldPair)
if localReg == nil {
localReg = json.NewRegistry()
}
localReg.Register(pair.Name, pair.Value)
}
}
s := NewSet()
if parsePEM {
src = bytes.TrimSpace(src)
for len(src) > 0 {
raw, rest, err := DecodePEM(src)
if err != nil {
return nil, fmt.Errorf(`failed to parse PEM encoded key: %w`, err)
}
key, err := FromRaw(raw)
if err != nil {
return nil, fmt.Errorf(`failed to create jwk.Key from %T: %w`, raw, err)
}
if err := s.AddKey(key); err != nil {
return nil, fmt.Errorf(`failed to add jwk.Key to set: %w`, err)
}
src = bytes.TrimSpace(rest)
}
return s, nil
}
if localReg != nil || ignoreParseError {
dcKs, ok := s.(KeyWithDecodeCtx)
if !ok {
return nil, fmt.Errorf(`typed field was requested, but the key set (%T) does not support DecodeCtx`, s)
}
dc := &setDecodeCtx{
DecodeCtx: json.NewDecodeCtx(localReg),
ignoreParseError: ignoreParseError,
}
dcKs.SetDecodeCtx(dc)
defer func() { dcKs.SetDecodeCtx(nil) }()
}
if err := json.Unmarshal(src, s); err != nil {
return nil, fmt.Errorf(`failed to unmarshal JWK set: %w`, err)
}
return s, nil
}
// ParseReader parses a JWK set from the incoming byte buffer.
func ParseReader(src io.Reader, options ...ParseOption) (Set, error) {
// meh, there's no way to tell if a stream has "ended" a single
// JWKs except when we encounter an EOF, so just... ReadAll
buf, err := io.ReadAll(src)
if err != nil {
return nil, fmt.Errorf(`failed to read from io.Reader: %w`, err)
}
return Parse(buf, options...)
}
// ParseString parses a JWK set from the incoming string.
func ParseString(s string, options ...ParseOption) (Set, error) {
return Parse([]byte(s), options...)
}
// AssignKeyID is a convenience function to automatically assign the "kid"
// section of the key, if it already doesn't have one. It uses Key.Thumbprint
// method with crypto.SHA256 as the default hashing algorithm
func AssignKeyID(key Key, options ...AssignKeyIDOption) error {
if _, ok := key.Get(KeyIDKey); ok {
return nil
}
hash := crypto.SHA256
for _, option := range options {
//nolint:forcetypeassert
switch option.Ident() {
case identThumbprintHash{}:
hash = option.Value().(crypto.Hash)
}
}
h, err := key.Thumbprint(hash)
if err != nil {
return fmt.Errorf(`failed to generate thumbprint: %w`, err)
}
if err := key.Set(KeyIDKey, base64.EncodeToString(h)); err != nil {
return fmt.Errorf(`failed to set "kid": %w`, err)
}
return nil
}
func cloneKey(src Key) (Key, error) {
var dst Key
switch src.(type) {
case RSAPrivateKey:
dst = newRSAPrivateKey()
case RSAPublicKey:
dst = newRSAPublicKey()
case ECDSAPrivateKey:
dst = newECDSAPrivateKey()
case ECDSAPublicKey:
dst = newECDSAPublicKey()
case OKPPrivateKey:
dst = newOKPPrivateKey()
case OKPPublicKey:
dst = newOKPPublicKey()
case SymmetricKey:
dst = newSymmetricKey()
default:
return nil, fmt.Errorf(`unknown key type %T`, src)
}
for _, pair := range src.makePairs() {
//nolint:forcetypeassert
key := pair.Key.(string)
if err := dst.Set(key, pair.Value); err != nil {
return nil, fmt.Errorf(`failed to set %q: %w`, key, err)
}
}
return dst, nil
}
// Pem serializes the given jwk.Key in PEM encoded ASN.1 DER format,
// using either PKCS8 for private keys and PKIX for public keys.
// If you need to encode using PKCS1 or SEC1, you must do it yourself.
//
// # Argument must be of type jwk.Key or jwk.Set
//
// Currently only EC (including Ed25519) and RSA keys (and jwk.Set
// comprised of these key types) are supported.
func Pem(v interface{}) ([]byte, error) {
var set Set
switch v := v.(type) {
case Key:
set = NewSet()
if err := set.AddKey(v); err != nil {
return nil, fmt.Errorf(`failed to add key to set: %w`, err)
}
case Set:
set = v
default:
return nil, fmt.Errorf(`argument to Pem must be either jwk.Key or jwk.Set: %T`, v)
}
var ret []byte
for i := 0; i < set.Len(); i++ {
key, _ := set.Key(i)
typ, buf, err := asnEncode(key)
if err != nil {
return nil, fmt.Errorf(`failed to encode content for key #%d: %w`, i, err)
}
var block pem.Block
block.Type = typ
block.Bytes = buf
ret = append(ret, pem.EncodeToMemory(&block)...)
}
return ret, nil
}
func asnEncode(key Key) (string, []byte, error) {
switch key := key.(type) {
case RSAPrivateKey, ECDSAPrivateKey, OKPPrivateKey:
var rawkey interface{}
if err := key.Raw(&rawkey); err != nil {
return "", nil, fmt.Errorf(`failed to get raw key from jwk.Key: %w`, err)
}
buf, err := x509.MarshalPKCS8PrivateKey(rawkey)
if err != nil {
return "", nil, fmt.Errorf(`failed to marshal PKCS8: %w`, err)
}
return pmPrivateKey, buf, nil
case RSAPublicKey, ECDSAPublicKey, OKPPublicKey:
var rawkey interface{}
if err := key.Raw(&rawkey); err != nil {
return "", nil, fmt.Errorf(`failed to get raw key from jwk.Key: %w`, err)
}
buf, err := x509.MarshalPKIXPublicKey(rawkey)
if err != nil {
return "", nil, fmt.Errorf(`failed to marshal PKIX: %w`, err)
}
return pmPublicKey, buf, nil
default:
return "", nil, fmt.Errorf(`unsupported key type %T`, key)
}
}
// RegisterCustomField allows users to specify that a private field
// be decoded as an instance of the specified type. This option has
// a global effect.
//
// For example, suppose you have a custom field `x-birthday`, which
// you want to represent as a string formatted in RFC3339 in JSON,
// but want it back as `time.Time`.
//
// In that case you would register a custom field as follows
//
// jwk.RegisterCustomField(`x-birthday`, timeT)
//
// Then `key.Get("x-birthday")` will still return an `interface{}`,
// but you can convert its type to `time.Time`
//
// bdayif, _ := key.Get(`x-birthday`)
// bday := bdayif.(time.Time)
func RegisterCustomField(name string, object interface{}) {
registry.Register(name, object)
}
func AvailableCurves() []elliptic.Curve {
return ecutil.AvailableCurves()
}
func CurveForAlgorithm(alg jwa.EllipticCurveAlgorithm) (elliptic.Curve, bool) {
return ecutil.CurveForAlgorithm(alg)
}