forked from kdn251/interviews
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBasicRemains.java
45 lines (40 loc) · 1.33 KB
/
BasicRemains.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
/**
* Given a base b and two non-negative base b integers
* p and m, compute p mod m and print the
* result as a base-b integer. p mod m is defined
* as the smallest non-negative integer k such that
* p = a ∗ m + k for some integer a.
* Input
* Input consists of a number of cases. Each case is
* represented by a line containing three unsigned
* integers. The first, b, is a decimal number between
* 2 and 10. The second, p, contains up to 1000 digits between 0 and b − 1. The third, m, contains
* up to 9 digits between 0 and b − 1. The last case is followed by a line containing ‘0’.
* Output
* For each test case, print a line giving p mod m as a base-b integer.
* Sample Input
* 2 1100 101
* 10 123456789123456789123456789 1000
* 0
* Sample Output
* 10
* 789
*
*/
//https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=1492
import java.math.BigInteger;
import java.util.Scanner;
public class BasicRemains {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
while (input.hasNext()) {
int baseNumber = input.nextInt();
if (baseNumber == 0) {
break;
}
BigInteger p = new BigInteger(input.next(), baseNumber);
BigInteger m = new BigInteger(input.next(), baseNumber);
System.out.println((p.mod(m)).toString(baseNumber));
}
}
}