forked from osmr/imgclsmob
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_pt.py
569 lines (510 loc) · 18.2 KB
/
train_pt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
import os
import time
import logging
import argparse
import random
import numpy as np
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torch.utils.data
from common.logger_utils import initialize_logging
from common.train_log_param_saver import TrainLogParamSaver
from pytorch.utils import prepare_pt_context, prepare_model, validate
from pytorch.utils import report_accuracy, get_composite_metric, get_metric_name
from pytorch.dataset_utils import get_dataset_metainfo
from pytorch.dataset_utils import get_train_data_source, get_val_data_source
def add_train_cls_parser_arguments(parser):
parser.add_argument(
"--model",
type=str,
required=True,
help="type of model to use. see model_provider for options")
parser.add_argument(
"--use-pretrained",
action="store_true",
help="enable using pretrained model from github repo")
parser.add_argument(
"--resume",
type=str,
default="",
help="resume from previously saved parameters if not None")
parser.add_argument(
"--resume-state",
type=str,
default="",
help="resume from previously saved optimizer state if not None")
parser.add_argument(
"--num-gpus",
type=int,
default=0,
help="number of gpus to use")
parser.add_argument(
"-j",
"--num-data-workers",
dest="num_workers",
default=4,
type=int,
help="number of preprocessing workers")
parser.add_argument(
"--batch-size",
type=int,
default=512,
help="training batch size per device (CPU/GPU)")
parser.add_argument(
"--batch-size-scale",
type=int,
default=1,
help="manual batch-size increasing factor")
parser.add_argument(
"--num-epochs",
type=int,
default=120,
help="number of training epochs")
parser.add_argument(
"--start-epoch",
type=int,
default=1,
help="starting epoch for resuming, default is 1 for new training")
parser.add_argument(
"--attempt",
type=int,
default=1,
help="current attempt number for training")
parser.add_argument(
"--optimizer-name",
type=str,
default="nag",
help="optimizer name")
parser.add_argument(
"--lr",
type=float,
default=0.1,
help="learning rate")
parser.add_argument(
"--lr-mode",
type=str,
default="cosine",
help="learning rate scheduler mode. options are step, poly and cosine")
parser.add_argument(
"--lr-decay",
type=float,
default=0.1,
help="decay rate of learning rate")
parser.add_argument(
"--lr-decay-period",
type=int,
default=0,
help="interval for periodic learning rate decays. default is 0 to disable")
parser.add_argument(
"--lr-decay-epoch",
type=str,
default="40,60",
help="epoches at which learning rate decays")
parser.add_argument(
"--target-lr",
type=float,
default=1e-8,
help="ending learning rate")
parser.add_argument(
"--poly-power",
type=float,
default=2,
help="power value for poly LR scheduler")
parser.add_argument(
"--warmup-epochs",
type=int,
default=0,
help="number of warmup epochs")
parser.add_argument(
"--warmup-lr",
type=float,
default=1e-8,
help="starting warmup learning rate")
parser.add_argument(
"--warmup-mode",
type=str,
default="linear",
help="learning rate scheduler warmup mode. options are linear, poly and constant")
parser.add_argument(
"--momentum",
type=float,
default=0.9,
help="momentum value for optimizer")
parser.add_argument(
"--wd",
type=float,
default=0.0001,
help="weight decay rate")
parser.add_argument(
"--gamma-wd-mult",
type=float,
default=1.0,
help="weight decay multiplier for batchnorm gamma")
parser.add_argument(
"--beta-wd-mult",
type=float,
default=1.0,
help="weight decay multiplier for batchnorm beta")
parser.add_argument(
"--bias-wd-mult",
type=float,
default=1.0,
help="weight decay multiplier for bias")
parser.add_argument(
"--grad-clip",
type=float,
default=None,
help="max_norm for gradient clipping")
parser.add_argument(
"--label-smoothing",
action="store_true",
help="use label smoothing")
parser.add_argument(
"--mixup",
action="store_true",
help="use mixup strategy")
parser.add_argument(
"--mixup-epoch-tail",
type=int,
default=20,
help="number of epochs without mixup at the end of training")
parser.add_argument(
"--log-interval",
type=int,
default=50,
help="number of batches to wait before logging")
parser.add_argument(
"--save-interval",
type=int,
default=4,
help="saving parameters epoch interval, best model will always be saved")
parser.add_argument(
"--save-dir",
type=str,
default="",
help="directory of saved models and log-files")
parser.add_argument(
"--logging-file-name",
type=str,
default="train.log",
help="filename of training log")
parser.add_argument(
"--seed",
type=int,
default=-1,
help="Random seed to be fixed")
parser.add_argument(
"--log-packages",
type=str,
default="torch, torchvision",
help="list of python packages for logging")
parser.add_argument(
"--log-pip-packages",
type=str,
default="",
help="list of pip packages for logging")
parser.add_argument(
"--tune-layers",
type=str,
default="",
help="regexp for selecting layers for fine tuning")
def parse_args():
parser = argparse.ArgumentParser(
description="Train a model for image classification (PyTorch)",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument(
"--dataset",
type=str,
default="ImageNet1K",
help="dataset name. options are ImageNet1K, CUB200_2011, CIFAR10, CIFAR100, SVHN")
parser.add_argument(
"--work-dir",
type=str,
default=os.path.join("..", "imgclsmob_data"),
help="path to working directory only for dataset root path preset")
args, _ = parser.parse_known_args()
dataset_metainfo = get_dataset_metainfo(dataset_name=args.dataset)
dataset_metainfo.add_dataset_parser_arguments(
parser=parser,
work_dir_path=args.work_dir)
add_train_cls_parser_arguments(parser)
args = parser.parse_args()
return args
def init_rand(seed):
if seed <= 0:
seed = np.random.randint(10000)
else:
cudnn.deterministic = True
logging.warning(
"You have chosen to seed training. This will turn on the CUDNN deterministic setting, which can slow down "
"your training considerably! You may see unexpected behavior when restarting from checkpoints.")
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
return seed
def prepare_trainer(net,
optimizer_name,
wd,
momentum,
lr_mode,
lr,
lr_decay_period,
lr_decay_epoch,
lr_decay,
# warmup_epochs,
# batch_size,
num_epochs,
# num_training_samples,
state_file_path):
optimizer_name = optimizer_name.lower()
if (optimizer_name == "sgd") or (optimizer_name == "nag"):
optimizer = torch.optim.SGD(
params=net.parameters(),
lr=lr,
momentum=momentum,
weight_decay=wd,
nesterov=(optimizer_name == "nag"))
else:
raise ValueError("Usupported optimizer: {}".format(optimizer_name))
if state_file_path:
checkpoint = torch.load(state_file_path)
if type(checkpoint) == dict:
optimizer.load_state_dict(checkpoint["optimizer"])
start_epoch = checkpoint["epoch"]
else:
start_epoch = None
else:
start_epoch = None
cudnn.benchmark = True
lr_mode = lr_mode.lower()
if lr_decay_period > 0:
lr_decay_epoch = list(range(lr_decay_period, num_epochs, lr_decay_period))
else:
lr_decay_epoch = [int(i) for i in lr_decay_epoch.split(",")]
if (lr_mode == "step") and (lr_decay_period != 0):
lr_scheduler = torch.optim.lr_scheduler.StepLR(
optimizer=optimizer,
step_size=lr_decay_period,
gamma=lr_decay,
last_epoch=-1)
elif (lr_mode == "multistep") or ((lr_mode == "step") and (lr_decay_period == 0)):
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer=optimizer,
milestones=lr_decay_epoch,
gamma=lr_decay,
last_epoch=-1)
elif lr_mode == "cosine":
for group in optimizer.param_groups:
group.setdefault("initial_lr", group["lr"])
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer=optimizer,
T_max=num_epochs,
last_epoch=(num_epochs - 1))
else:
raise ValueError("Usupported lr_scheduler: {}".format(lr_mode))
return optimizer, lr_scheduler, start_epoch
def save_params(file_stem,
state):
torch.save(
obj=state["state_dict"],
f=(file_stem + ".pth"))
torch.save(
obj=state,
f=(file_stem + ".states"))
def train_epoch(epoch,
net,
train_metric,
train_data,
use_cuda,
L,
optimizer,
# lr_scheduler,
batch_size,
log_interval):
tic = time.time()
net.train()
train_metric.reset()
train_loss = 0.0
btic = time.time()
for i, (data, target) in enumerate(train_data):
if use_cuda:
data = data.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
output = net(data)
loss = L(output, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_loss += loss.item()
train_metric.update(
labels=target,
preds=output)
if log_interval and not (i + 1) % log_interval:
speed = batch_size * log_interval / (time.time() - btic)
btic = time.time()
train_accuracy_msg = report_accuracy(metric=train_metric)
logging.info("Epoch[{}] Batch [{}]\tSpeed: {:.2f} samples/sec\t{}\tlr={:.5f}".format(
epoch + 1, i, speed, train_accuracy_msg, optimizer.param_groups[0]["lr"]))
throughput = int(batch_size * (i + 1) / (time.time() - tic))
logging.info("[Epoch {}] speed: {:.2f} samples/sec\ttime cost: {:.2f} sec".format(
epoch + 1, throughput, time.time() - tic))
train_loss /= (i + 1)
train_accuracy_msg = report_accuracy(metric=train_metric)
logging.info("[Epoch {}] training: {}\tloss={:.4f}".format(
epoch + 1, train_accuracy_msg, train_loss))
return train_loss
def train_net(batch_size,
num_epochs,
start_epoch1,
train_data,
val_data,
net,
optimizer,
lr_scheduler,
lp_saver,
log_interval,
num_classes,
val_metric,
train_metric,
use_cuda):
assert (num_classes > 0)
L = nn.CrossEntropyLoss()
if use_cuda:
L = L.cuda()
assert (type(start_epoch1) == int)
assert (start_epoch1 >= 1)
if start_epoch1 > 1:
logging.info("Start training from [Epoch {}]".format(start_epoch1))
validate(
metric=val_metric,
net=net,
val_data=val_data,
use_cuda=use_cuda)
val_accuracy_msg = report_accuracy(metric=val_metric)
logging.info("[Epoch {}] validation: {}".format(start_epoch1 - 1, val_accuracy_msg))
gtic = time.time()
for epoch in range(start_epoch1 - 1, num_epochs):
lr_scheduler.step()
train_loss = train_epoch(
epoch=epoch,
net=net,
train_metric=train_metric,
train_data=train_data,
use_cuda=use_cuda,
L=L,
optimizer=optimizer,
# lr_scheduler,
batch_size=batch_size,
log_interval=log_interval)
validate(
metric=val_metric,
net=net,
val_data=val_data,
use_cuda=use_cuda)
val_accuracy_msg = report_accuracy(metric=val_metric)
logging.info("[Epoch {}] validation: {}".format(epoch + 1, val_accuracy_msg))
if lp_saver is not None:
state = {
"epoch": epoch + 1,
"state_dict": net.state_dict(),
"optimizer": optimizer.state_dict(),
}
lp_saver_kwargs = {"state": state}
val_acc_values = val_metric.get()[1]
train_acc_values = train_metric.get()[1]
val_acc_values = val_acc_values if type(val_acc_values) == list else [val_acc_values]
train_acc_values = train_acc_values if type(train_acc_values) == list else [train_acc_values]
lp_saver.epoch_test_end_callback(
epoch1=(epoch + 1),
params=(val_acc_values + train_acc_values + [train_loss, optimizer.param_groups[0]["lr"]]),
**lp_saver_kwargs)
logging.info("Total time cost: {:.2f} sec".format(time.time() - gtic))
if lp_saver is not None:
opt_metric_name = get_metric_name(val_metric, lp_saver.acc_ind)
logging.info("Best {}: {:.4f} at {} epoch".format(
opt_metric_name, lp_saver.best_eval_metric_value, lp_saver.best_eval_metric_epoch))
def main():
args = parse_args()
args.seed = init_rand(seed=args.seed)
_, log_file_exist = initialize_logging(
logging_dir_path=args.save_dir,
logging_file_name=args.logging_file_name,
script_args=args,
log_packages=args.log_packages,
log_pip_packages=args.log_pip_packages)
use_cuda, batch_size = prepare_pt_context(
num_gpus=args.num_gpus,
batch_size=args.batch_size)
net = prepare_model(
model_name=args.model,
use_pretrained=args.use_pretrained,
pretrained_model_file_path=args.resume.strip(),
use_cuda=use_cuda)
real_net = net.module if hasattr(net, "module") else net
assert (hasattr(real_net, "num_classes"))
num_classes = real_net.num_classes
ds_metainfo = get_dataset_metainfo(dataset_name=args.dataset)
ds_metainfo.update(args=args)
train_data = get_train_data_source(
ds_metainfo=ds_metainfo,
batch_size=batch_size,
num_workers=args.num_workers)
val_data = get_val_data_source(
ds_metainfo=ds_metainfo,
batch_size=batch_size,
num_workers=args.num_workers)
optimizer, lr_scheduler, start_epoch = prepare_trainer(
net=net,
optimizer_name=args.optimizer_name,
wd=args.wd,
momentum=args.momentum,
lr_mode=args.lr_mode,
lr=args.lr,
lr_decay_period=args.lr_decay_period,
lr_decay_epoch=args.lr_decay_epoch,
lr_decay=args.lr_decay,
# warmup_epochs=args.warmup_epochs,
# batch_size=batch_size,
num_epochs=args.num_epochs,
# num_training_samples=num_training_samples,
state_file_path=args.resume_state)
if args.save_dir and args.save_interval:
param_names = ds_metainfo.val_metric_capts + ds_metainfo.train_metric_capts + ["Train.Loss", "LR"]
lp_saver = TrainLogParamSaver(
checkpoint_file_name_prefix="{}_{}".format(ds_metainfo.short_label, args.model),
last_checkpoint_file_name_suffix="last",
best_checkpoint_file_name_suffix=None,
last_checkpoint_dir_path=args.save_dir,
best_checkpoint_dir_path=None,
last_checkpoint_file_count=2,
best_checkpoint_file_count=2,
checkpoint_file_save_callback=save_params,
checkpoint_file_exts=(".pth", ".states"),
save_interval=args.save_interval,
num_epochs=args.num_epochs,
param_names=param_names,
acc_ind=ds_metainfo.saver_acc_ind,
# bigger=[True],
# mask=None,
score_log_file_path=os.path.join(args.save_dir, "score.log"),
score_log_attempt_value=args.attempt,
best_map_log_file_path=os.path.join(args.save_dir, "best_map.log"))
else:
lp_saver = None
train_net(
batch_size=batch_size,
num_epochs=args.num_epochs,
start_epoch1=args.start_epoch,
train_data=train_data,
val_data=val_data,
net=net,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
lp_saver=lp_saver,
log_interval=args.log_interval,
num_classes=num_classes,
val_metric=get_composite_metric(ds_metainfo.val_metric_names, ds_metainfo.val_metric_extra_kwargs),
train_metric=get_composite_metric(ds_metainfo.train_metric_names, ds_metainfo.train_metric_extra_kwargs),
use_cuda=use_cuda)
if __name__ == "__main__":
main()