forked from hjptriplebee/meterReader
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlocator.py
91 lines (74 loc) · 3.08 KB
/
locator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import cv2
import numpy as np
import math
from sklearn.metrics.pairwise import pairwise_distances
from configuration import *
def getPointTemplate(pointID):
"""
get the locate target
:param pointID: ID
:return: the template for location
"""
return cv2.imread(templatePath + "/"+pointID+".jpg")
# return cv2.imread("templateForLocation/"+pointID+".jpg")
def locateTargetwithSIFT(image, template):
"""
get the place of the template in the picture
:param image: picture captured by robot
:param template: the saved template
:return: coordinates x,y,w,h
"""
templateBlurred = cv2.GaussianBlur(template, (3, 3), 0)
imageBlurred = cv2.GaussianBlur(image, (3, 3), 0)
sift = cv2.xfeatures2d.SIFT_create()
# shape of descriptor n * 128, n is the num of key points.
# a row of descriptor is the feature of related key point.
templateKeyPoint, templateDescriptor = sift.detectAndCompute(templateBlurred, None)
imageKeyPoint, imageDescriptor = sift.detectAndCompute(imageBlurred, None)
# for debug
# templateBlurred = cv2.drawKeypoints(templateBlurred, templateKeyPoint, templateBlurred)
# imageBlurred = cv2.drawKeypoints(imageBlurred, imageKeyPoint, imageBlurred)
# cv2.imshow("template", templateBlurred)
# cv2.imshow("image", imageBlurred)
# match
bf = cv2.BFMatcher()
# k = 2, so each match has 2 points. 2 points are sorted by distance.
matches = bf.knnMatch(templateDescriptor, imageDescriptor, k=2)
# The first one is better than the second one
good = [[m] for m, n in matches if m.distance < 0.8 * n.distance]
# distance matrix
templatePointMatrix = np.array([list(templateKeyPoint[p[0].queryIdx].pt) for p in good])
imagePointMatrix = np.array([list(imageKeyPoint[p[0].trainIdx].pt) for p in good])
templatePointDistanceMatrix = pairwise_distances(templatePointMatrix, metric="euclidean")
imagePointDistanceMatrix = pairwise_distances(imagePointMatrix, metric="euclidean")
# del bad match
distances = []
maxAbnormalNum = 15
for i in range(len(good)):
diff = abs(templatePointDistanceMatrix[i] - imagePointDistanceMatrix[i])
# distance between distance features
diff.sort()
distances.append(np.sqrt(np.sum(np.square(diff[:-maxAbnormalNum]))))
averageDistance = np.average(distances)
good2 = [good[i] for i in range(len(good)) if distances[i] < 2 * averageDistance]
dst_pts = np.float32([imageKeyPoint[m[0].trainIdx].pt for m in good2]).reshape(-1, 1, 2)
x, y = int(np.mean(dst_pts[:, 0, 1])), int(np.mean(dst_pts[:, 0, 0]))
# for show
# cv2.circle(image, (y, x), 20, (0,0,255), 5)
# cv2.imshow("show", image)
# cv2.waitKey(0)
return [x, y]
def locator(image, pointID):
"""
global locator
:param image used for locatomh
:param pointID: ID of the place
:return:
"""
template = getPointTemplate(pointID)
position = locateTargetwithSIFT(image, template)
return position
if __name__ == '__main__':
img = cv2.imread("image/17-2.jpg")
loc = locator(img, "17-2_1")
print(loc)