forked from thuhcsi/VAENAR-TTS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
inference.py
173 lines (162 loc) · 8.33 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import tensorflow as tf
import numpy as np
import argparse
import time
import os
from tqdm import tqdm
from configs import LJHPS, DataBakerHPS
from audio import TestUtils
from datasets import TFRecordWriter, LJSpeech, DataBaker
from models import VAENAR
def synthesize_from_text():
parser = argparse.ArgumentParser('Training parameters parser')
parser.add_argument('--dataset', type=str, choices=['ljspeech', 'databaker', 'cantonese'],
help='dataset name, currently support ljspeech and databaker')
parser.add_argument('--text', type=str,
help='text file contains multiple lines of text to be synthesized')
parser.add_argument('--ckpt_path', type=str,
help='path to the model ckpt')
parser.add_argument('--test_dir', type=str,
help='directory to save test results')
parser.add_argument('--temperature', type=float, default=0.)
args = parser.parse_args()
# validate the paths
ckpt_path = args.ckpt_path
ckpt_step = ckpt_path.split('-')[-1]
assert os.path.isfile(args.text)
test_dir = args.test_dir
if not os.path.isdir(test_dir):
os.makedirs(test_dir)
hparams = {'ljspeech': LJHPS, 'databaker': DataBakerHPS}[args.dataset]
dataset = {'ljspeech': LJSpeech, 'databaker': DataBaker}[args.dataset](
data_root=None, save_dir=None, hps=hparams)
tester = TestUtils(hparams, args.test_dir)
# setup model
model = VAENAR(hparams)
checkpoint = tf.train.Checkpoint(model=model)
# model.load_weights(ckpt_path)
checkpoint.restore(ckpt_path).expect_partial()
# prediction
text_lens = []
texts = []
with open(args.text, 'r') as f:
for line in f:
line = line.strip()
text = dataset.text_to_array(line)
text_lens.append(len(text))
texts.append(text)
ids = [str(i) for i in range(len(text_lens))]
text_max_len = np.max(text_lens)
text_batch = np.stack([t + (text_max_len - len(t)) * [0] for t in texts], axis=0)
@tf.function(input_signature=[
tf.TensorSpec(shape=[None, None], dtype=tf.int32),
tf.TensorSpec(shape=[None], dtype=tf.int32)])
def test_step(t, t_l):
text_pos_step = model.mel_text_len_ratio / tf.cast(
hparams.Common.final_reduction_factor, tf.float32)
text_embd = model.text_encoder(t, t_l, pos_step=text_pos_step, training=False)
text_embd.set_shape([None, None, hparams.Encoder.Transformer.embd_dim])
predicted_lengths = model.length_predictor(
tf.stop_gradient(text_embd), t_l, training=False)
predicted_m_l = tf.cast(predicted_lengths, tf.int32)
reduced_pred_ml = (predicted_m_l + 80 + hparams.Common.final_reduction_factor - 1
) // hparams.Common.final_reduction_factor
prior_latents, prior_logprobs = model.prior.sample(
reduced_pred_ml, text_embd, t_l, training=False, temperature=args.temperature)
_, prior_dec_outs, prior_dec_alignments = model.decoder(
prior_latents, text_embd, reduced_pred_ml, t_l, training=False)
return prior_dec_outs, predicted_m_l + 80, prior_dec_alignments
prediction, pred_lens, dec_alignments = test_step(tf.constant(text_batch, dtype=tf.int32),
tf.constant(text_lens, dtype=tf.int32))
tester.synthesize_and_save_wavs(ckpt_step, prediction.numpy(), pred_lens.numpy(), ids, prefix='test')
for k in dec_alignments.keys():
tester.multi_draw_attention_alignments(
dec_alignments[k].numpy(), texts, text_lens,
pred_lens.numpy(), ckpt_step, ids, 'prior-{}'.format(k))
return
def inference_test():
parser = argparse.ArgumentParser('Training parameters parser')
parser.add_argument('--dataset', type=str, choices=['ljspeech', 'databaker', 'cantonese'],
help='dataset name, currently support ljspeech, databaker and cantonese')
parser.add_argument('--data_dir', type=str,
help='dataset root directory')
parser.add_argument('--ckpt_path', type=str,
help='path to the model ckpt')
parser.add_argument('--test_dir', type=str,
help='directory to save test results')
parser.add_argument('--batch_size', type=int, default=1)
parser.add_argument('--temperature', type=float, default=0.)
parser.add_argument('--write_mels', type=bool, default=True)
parser.add_argument('--write_wavs', type=bool, default=False)
parser.add_argument('--draw_alignments', type=bool, default=False)
args = parser.parse_args()
# validate the paths
ckpt_path = args.ckpt_path
ckpt_step = ckpt_path.split('-')[-1]
test_dir = args.test_dir
if not os.path.isdir(test_dir):
os.makedirs(test_dir)
# setup hparams
hparams = {'ljspeech': LJHPS, 'databaker': DataBakerHPS}[args.dataset]
tester = TestUtils(hparams, args.test_dir)
# 1. loading dataset
data_records = TFRecordWriter(save_dir=args.data_dir)
test_set = data_records.create_dataset(
buffer_size=hparams.Dataset.buffer_size,
num_parallel_reads=hparams.Dataset.num_parallel_reads,
pad_factor=hparams.Dataset.pad_factor,
batch_size=args.batch_size,
num_mels=hparams.Audio.num_mels,
shuffle_buffer=hparams.Train.shuffle_buffer,
shuffle=hparams.Train.shuffle,
tfrecord_files=data_records.get_tfrecords_list('test'))
# setup model
model = VAENAR(hparams)
checkpoint = tf.train.Checkpoint(model=model)
checkpoint.restore(ckpt_path).expect_partial()
@tf.function(input_signature=[
tf.TensorSpec(shape=[None, None], dtype=tf.int32),
tf.TensorSpec(shape=[None], dtype=tf.int32)])
def test_step(t, t_l):
text_pos_step = model.mel_text_len_ratio / tf.cast(
hparams.Common.final_reduction_factor, tf.float32)
text_embd = model.text_encoder(t, t_l, pos_step=text_pos_step, training=False)
text_embd.set_shape([None, None, hparams.Encoder.Transformer.embd_dim])
predicted_lengths = model.length_predictor(
tf.stop_gradient(text_embd), t_l, training=False)
predicted_m_l = tf.cast(predicted_lengths, tf.int32)
reduced_pred_ml = (predicted_m_l + 80 + hparams.Common.final_reduction_factor - 1
) // hparams.Common.final_reduction_factor
prior_latents, prior_logprobs = model.prior.sample(
reduced_pred_ml, text_embd, t_l, training=False, temperature=args.temperature)
_, prior_dec_outs, prior_dec_alignments = model.decoder(
prior_latents, text_embd, reduced_pred_ml, t_l, training=False,
reduction_factor=hparams.Common.final_reduction_factor)
return prior_dec_outs, predicted_m_l + 80, prior_dec_alignments
# tf.function initialization
for _, texts, _, t_lengths, _ in test_set.take(1):
_, _, _ = test_step(texts, t_lengths)
time_consumed = 0.
durations = 0.
for fids, texts, _, t_lengths, _ in tqdm(test_set):
time_begin = time.time()
prior_outs, pred_m_lens, prior_ali = test_step(texts, t_lengths)
time_end = time.time()
time_consumed += time_end - time_begin
durations += np.sum(pred_m_lens.numpy()) * hparams.Audio.frame_shift_sample / hparams.Audio.sample_rate
if args.write_mels:
tester.write_mels(ckpt_step, prior_outs.numpy(), pred_m_lens.numpy(), fids.numpy(), prefix='prior')
if args.write_wavs:
tester.synthesize_and_save_wavs(ckpt_step, prior_outs.numpy(), pred_m_lens.numpy(), fids.numpy(), prefix='prior')
if args.draw_alignments:
for k in prior_ali.keys():
tester.multi_draw_attention_alignments(
prior_ali[k].numpy(), texts.numpy(), t_lengths.numpy(),
pred_m_lens.numpy(), ckpt_step, fids.numpy(), 'prior-{}'.format(k))
average_rtf = time_consumed / durations
print('Total time consumed is {} Secs,'
'total synthesis duration is {} Secs,'
'Average RTF is {}.'.format(time_consumed, durations, average_rtf))
if __name__ == '__main__':
inference_test()
# synthesize_from_text()