forked from ocropus-archive/DUP-ocropy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
lineseg.py
395 lines (359 loc) · 15.3 KB
/
lineseg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
from pylab import *
from scipy.ndimage import filters,morphology,measurements
import morph
from toplevel import *
@checks(AFLOAT2,alpha=RANGE(0.0,20.0),r=RANGE(0,20))
def dpcuts(image,alpha=0.5,r=2):
"""Compute dynamic programming cuts through an image.
The image contains the costs themselves, `alpha` is the
cost of taking a diagonal step, and `r` is the range
of diagonal steps to be considered (determining the
maximum slope of a cut."""
costs = 9999*ones(image.shape)
costs[0,:] = 0
sources = zeros(image.shape,'i')
for i in range(1,len(costs)):
for k in range(-r,r+1):
ncosts = roll(costs[i-1,:],k)+image[i,:]+alpha*abs(k)
sources[i,:] = where(ncosts<costs[i,:],-k,sources[i,:])
costs[i,:] = where(ncosts<costs[i,:],ncosts,costs[i,:])
return costs,sources
def between(u,v):
"""Iterate over the values between `u` and `v`, inclusive."""
u,v = min(u,v),max(u,v)
for i in range(u,v+1):
yield i
def dptrack(l,s):
"""Given a list `l` of starting locations and an
image `s` of steps produced by `dpcuts`, trace the cuts
and output an image containing the cuts. The output
image is guaranteed to be partitioned into separate
regions by the cuts (so that it can be labeled)."""
result = zeros(s.shape)
for i in l:
x0 = i
x = i
y = len(s)-1
while y>-1:
x = clip(x,0,result.shape[1]-1)
for j in between(x0,x):
result[y,j] = 1
y -= 1
x0 = x
x += s[y,x]
return result
@checks(AFLOAT2,imweight=RANGE(-20,20),bweight=RANGE(-20,20),diagweight=RANGE(-20,20))
def dplineseg1(image,imweight=4,bweight=-1,diagweight=1):
"""A dynamic programming line segmenter. This computes cuts going from bottom
to top. It is only used for testing and is not recommended for actual use because
these kinds of cuts do not work very well."""
cimage = imweight*image - bweight*maximum(0,roll(image,-1,1)-image)
c,s = dpcuts(cimage,alpha=diagweight)
costs = c[-1]
costs = filters.gaussian_filter(costs,1)
mins = find(filters.minimum_filter(costs,8)==costs)
tracks = dptrack(mins,s)
# combo = 3*tracks+cimage
return tracks
@checks(AFLOAT2)
def centroid(image):
"""Compute the centroid of an image."""
# FIXME just use the library function
ys,xs = mgrid[:image.shape[0],:image.shape[1]]
yc = sum(image*ys)/sum(image)
xc = sum(image*xs)/sum(image)
return yc,xc
@checks(AFLOAT2,imweight=RANGE(-20,20),bweight=RANGE(-20,0),diagweight=RANGE(-20,20),r=RANGE(0,4),debug=BOOL)
def dplineseg2(image,imweight=4,bweight=-1,diagweight=1,r=2,debug=0,width=-1,wfactor=1.0,
threshold=0.5,sigma=1.0):
"""Perform a dynamic programming line segmentation, as described in Breuel (1994).
This computes best cuts going out from the center in both directions, then finds
the loally minimum costs. Paths that move diagonally are penalized, and paths
that move along the left edge of a line are rewarded. Paths can only occur
separated by a minimum distance of `width`. If `width` is `-1`, the width is
estimated as `wfactor` times the square root of the second moment in the
`y` direction of the text line."""
if width<0:
import lineest
width = wfactor*lineest.vertical_stddev(image)[0]
yc,xc = centroid(image)
half = int(yc)
deriv = maximum(0,filters.gaussian_filter(image,(2,2),order=(0,1)))
deriv /= amax(deriv)
cimage = where(image,imweight*image,bweight*deriv)
if debug:
figure("debug-dpseg-costs")
clf()
subplot(411); imshow(cimage)
tc,ts = dpcuts(cimage[:half],alpha=diagweight,r=r)
bc,bs = dpcuts(cimage[half:][::-1],alpha=diagweight,r=r)
costs = bc[-1]+tc[-1]
if debug:
figure("debug-dpseg-costs")
subplot(412); imshow(tc)
subplot(413); imshow(bc)
costs = tc[-1]+bc[-1]
costs = filters.gaussian_filter(costs,sigma)
costs += 0.01*filters.gaussian_filter(costs,3.0*sigma)
# costs -= amin(costs)
mins = (filters.minimum_filter(costs,width)==costs) # *(costs>0.3*amax(costs))
mins *= costs<threshold*median(abs(costs))
if debug:
figure("debug-dpseg-mins")
plot(costs)
plot(tc[-1])
plot(bc[-1])
plot(mins)
l = find(mins)
tt = dptrack(l,ts)
bt = dptrack(l,bs)
tracks = r_[tt,bt[::-1]]
if debug:
figure("debug-dpseg-costs")
subplot(414)
imshow(tracks+0.5*image,interpolation='nearest')
ginput(1,0.1)
return tracks
@checks(DARKLINE)
def ccslineseg(image,debug=0):
image = 1.0*(image>0.3*amax(image))
sigma = 10.0
smooth = filters.gaussian_filter(image,(sigma,1.0*sigma),mode='constant')
center = (smooth==amax(smooth,axis=0)[newaxis,:])
center = filters.maximum_filter(center,(3,3))
center = morph.keep_marked(image>0.5,center)
center = filters.maximum_filter(center,(2,2))
center,_ = morph.label(center)
center = morph.spread_labels(center)
center *= image
return center
class SimpleParams:
def info(self,depth=0):
"""Print information about this object."""
pass
def pexists(self,name):
"""Check whether parameter NAME exists."""
return name in dir(self)
def pset(self,name,value):
"""Set parameter NAME to VALUE."""
assert name in dir(self)
self.__dict__[name] = value
def pget(self,name):
"""Get the value of string parameter NAME."""
return self.__dict__.get(name)
def pgetf(self,name):
"""Get the value of floating point parameter NAME."""
return float(self.__dict__.get(name))
import common as ocrolib
class CCSSegmentLine(SimpleParams):
@checks(object,LIGHTLINE)
def charseg(self,line):
"""Segment a text line into potential character parts."""
line = (line<0.5*(amax(line)+amin(line)))
seg = ccslineseg(line)
seg = morph.renumber_by_xcenter(seg)
return seg
class DPSegmentLine(SimpleParams):
"""Perform a dynamic programming line segmentation, as described in Breuel (1994).
This computes best cuts going out from the center in both directions, then finds
the loally minimum costs. Paths that move diagonally are penalized, and paths
that move along the left edge of a line are rewarded."""
@checks(object,imweight=RANGE(0,10),bweight=RANGE(-10,0),diagweight=RANGE(0,10),r=RANGE(1,5),debug=BOOL)
def __init__(self,imweight=4,bweight=-1,diagweight=1,r=1,debug=0,threshold=0.5):
self.r = r
self.imweight = imweight
self.bweight = bweight
self.diagweight = diagweight
self.debug = debug
self.threshold = threshold
@checks(object,LIGHTLINE)
def charseg(self,line):
"""Segment a text line into potential character parts."""
assert mean(line)>0.5*amax(line)
line = amax(line)-line
# line = line+self.ledge*maximum(0,roll(line,-1,1)-line)
tracks = dplineseg2(line,imweight=self.imweight,bweight=self.bweight,
diagweight=self.diagweight,debug=self.debug,r=self.r,
threshold=self.threshold)
tracks = array(tracks<0.5*amax(tracks),'i')
tracks,_ = morph.label(tracks)
self.tracks = tracks # for debuggin
stracks = morph.spread_labels(tracks)
rsegs = stracks*(line>0.5*amax(line))
if 0:
figure("temp")
subplot(311); morph.showlabels(tracks)
subplot(312); morph.showlabels(stracks)
subplot(313); morph.showlabels(rsegs)
raw_input()
return morph.renumber_by_xcenter(rsegs)
def seq2list(seq,result=None):
"""Given an OpenCV sequence object representing contours,
returns a list of 2D point arrays."""
if result is None: result = []
while seq:
l = list(seq)
result.append(array(l,'i'))
# sub = seq2list(seq.v_next(),result)
seq = seq.h_next()
result.sort(key=len,reverse=1)
return result
def image2contours(image,inside=0):
import cv
"""Given an image, return a list of (n,2) arrays corresponding to the
contours of that image. Uses OpenCV's FindContours with no approximation
and finding both inside and outside contours. The result is returned
in decreasing length."""
image = cv.fromarray(array(image>0,'B'))
storage = cv.CreateMemStorage()
if inside: mode = cv.CV_RETR_CCOMP
else: mode = cv.CV_RETR_EXTERNAL
seq = cv.FindContours(image, storage, mode, cv.CV_CHAIN_APPROX_NONE)
del storage
return seq2list(seq)
from scipy.spatial import distance
from scipy import linalg
def image_draw_line(image,y0,x0,y1,x1):
d = ((y0-y1)**2+(x0-x1)**2)**.5
for l in linspace(0.0,1.0,int(2*d+1)):
image[int(l*y0+(1-l)*y1),int(l*x0+(1-l)*x1)] = 1
def contourcuts(image,maxdist=15,minrange=10,mincdist=20,sigma=1.0,debug=0,r=8,s=0.5):
if debug:
figure(1); clf(); imshow(image)
# start by computing the contours
contours = image2contours(image!=0)
# generate a mask for grayscale morphology
mask = s*ones((r,r))
mask[2:-2,2:-2] = 0
cuts = []
# now handle each (external) contour individually
for k,cs in enumerate(contours):
# compute a matrix of all the pairwise distances of pixels
# around the contour, then smooth it a little
ds = distance.cdist(cs,cs)
ds = filters.gaussian_filter(ds,(sigma,sigma),mode='wrap')
# compute a circulant matrix telling us the pathlength
# between any two pixels on the contour
n = len(cs)
l = abs(arange(n)-n/2.0)
l = l[0]-l
cds = linalg.circulant(l)
# find true local minima (exclude ridges) by using the
# structuring element above
ge = morphology.grey_erosion(ds,structure=mask,mode='wrap')
locs = (ds<=ge)
# restrict it to pairs of points that are closer than maxdist
locs *= (ds<maxdist)
# restrict it to paris of points that are separated by
# at least mincdist on the contour
locs *= (cds>=mincdist)
# label the remaining minima and locate them
locs,n = measurements.label(locs)
cms = measurements.center_of_mass(locs,locs,range(1,n+1))
# keep only on of each pair (in canonical ordering)
cms = [(int(i+0.5),int(j+0.5)) for i,j in cms if i<j]
for i,j in cms:
x0,y0 = cs[i]
x1,y1 = cs[j]
# keep only the near vertical ones
if abs(y1-y0)>abs(x1-x0):
color = 'r'
cuts.append((cs[i],cs[j]))
else:
color = 'b'
if debug:
print (x0,y0),(x1,y1)
figure(1); plot([x0,x1],[y0,y1],color)
if debug:
figure(2); clf(); ion(); imshow(locs!=0)
figure(3); clf(); imshow(minimum(ds,maxdist*1.5),interpolation='nearest')
ginput(1,0.1)
print "hit ENTER"; raw_input()
# now construct a cut image
cutimage = zeros(image.shape)
for ((x0,y0),(x1,y1)) in cuts:
image_draw_line(cutimage,y0,x0,y1,x1)
cutimage = filters.maximum_filter(cutimage,(3,3))
if debug:
figure(4); clf(); imshow(maximum(0,image-0.5*cutimage))
return cutimage
class ComboSegmentLine(SimpleParams):
"""Perform a dynamic programming line segmentation, as described in Breuel (1994).
This computes best cuts going out from the center in both directions, then finds
the loally minimum costs. Paths that move diagonally are penalized, and paths
that move along the left edge of a line are rewarded.
In addition, this segmenter also computes contour-based cuts; these handle
cases like two touching "oo" that are not handled well by the dynamic programming
cuts. To integrate the two segmenters, the contour-based cuts are applied first,
and then the dynamic programming algorithm; this ensures that the two strategies
give consistent segmentations."""
@checks(object,imweight=RANGE(0,10),bweight=RANGE(-10,0),diagweight=RANGE(0,10),r=RANGE(1,5),debug=BOOL,maxdist=RANGE(0,1000),minrange=RANGE(0,1000),mincdist=RANGE(0,1000),sigma=RANGE(0.0,100.0),rr=RANGE(3,300),s=RANGE(0.0,500.0))
def __init__(self,imweight=4,bweight=-1,diagweight=1,r=1,debug=0,
maxdist=15,minrange=10,mincdist=20,sigma=1.0,rr=8,s=0.5):
self.r = r
self.imweight = imweight
self.bweight = bweight
self.diagweight = diagweight
self.debug = debug
self.maxdist = maxdist
self.minrange = minrange
self.mincdist = mincdist
self.sigma = sigma
self.rr = rr
self.s = s
@checks(object,LIGHTLINE)
def charseg(self,line):
"""Segment a text line into potential character parts."""
assert mean(line)>0.5*amax(line)
line0 = amax(line)-line
ccuts = contourcuts(line0,maxdist=self.maxdist,minrange=self.minrange,
mincdist=self.mincdist,sigma=self.sigma,r=self.rr,s=self.s)
line = maximum(0,line0-ccuts)
# line = line+self.ledge*maximum(0,roll(line,-1,1)-line)
tracks = dplineseg2(line,imweight=self.imweight,bweight=self.bweight,
diagweight=self.diagweight,debug=self.debug,r=self.r)
tracks = array(tracks<0.5*amax(tracks),'i')
tracks,_ = morph.label(tracks)
self.tracks = tracks
stracks = morph.spread_labels(tracks)
rsegs = stracks*(line0>0.5*amax(line0))
if self.debug:
figure("temp")
subplot(311); morph.showlabels(tracks)
subplot(312); morph.showlabels(stracks)
subplot(313); morph.showlabels(rsegs)
raw_input()
return morph.renumber_by_xcenter(rsegs)
### A top-level driver for quick and simple testing.
if __name__=="__main__":
import argparse
parser= argparse.ArgumentParser("Testing line segmentation models.")
subparsers = parser.add_subparsers(dest="subcommand")
test = subparsers.add_parser("test")
test.add_argument("--imweight",type=float,default=4,help="image weight (%(default)f")
test.add_argument("--bweight",type=float,default=-1,help="left border weight (%(default)f)")
test.add_argument("--diagweight",type=float,default=1,help="additional diagonal weight (%(default)f)")
test.add_argument("--r",type=int,default=1,help="range for diagonal steps (%(default)d)")
test.add_argument("--threshold",type=float,default=0.5)
test.add_argument("files",nargs="+",default=[])
# test2 = subparsers.add_parser("test2")
args = parser.parse_args()
if args.subcommand=="test":
segmenter = DPSegmentLine(imweight=args.imweight,
bweight=args.bweight,
diagweight=args.diagweight,
r=args.r,
threshold=args.threshold,
debug=1)
ion(); gray()
for fname in args.files:
print fname
image = ocrolib.read_image_gray(fname)
segmentation = segmenter.charseg(image)
figure("output")
subplot(211); imshow(image)
subplot(212); morph.showlabels(segmentation)
raw_input()
else:
parser.print_help()
sys.exit(0)