forked from ocropus-archive/DUP-ocropy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ocropus-sauvola
executable file
·370 lines (302 loc) · 12.4 KB
/
ocropus-sauvola
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
#!/usr/bin/python
### Largely self-contained image binarization and deskewing. You can easily
### use this as a basis for other kinds of preprocessing.
import sys,os
import signal
signal.signal(signal.SIGINT,lambda *args:sys.exit(1))
import traceback
import argparse
import multiprocessing
import matplotlib
if "DISPLAY" not in os.environ: matplotlib.use("AGG")
else: matplotlib.use("GTK")
import pylab
# all the image processing code comes from scipy and pylab
from pylab import *
from scipy.ndimage import measurements,interpolation
# ocrolib is only used for image I/O and pathname manipulation
import ocrolib
parser = argparse.ArgumentParser(description = """
Perform document image preprocessing:
- Sauvola binarization
- deskewing
- large and small component removal
Images are processed from the command line and put into a standard book directory,
creating
- book/0001.png (deskewed grayscale page image)
- book/0001.bin.png (deskewed and cleaned binary page image)
This assumes 300dpi images (i.e., all the internal thresholds and constants
are set up for that). If your image is a different resolution, use the -z (zoom)
argument.
This will work reasonbly well for many kinds of inputs, but
ocropus-nlbin is the preferred binarizer now.
""")
parser.add_argument("files",default=[],nargs='*',help="input lines")
parser.add_argument("-o","--output",help="output directory",default=None)
parser.add_argument("-q","--quiet",action="store_true",help="disable warnings")
parser.add_argument("-Q","--parallel",type=int,default=0,help="number of parallel processes to use")
parser.add_argument("-g","--gtextension",help="ground truth extension for copying in ground truth (include all dots)",default=None)
parser.add_argument("--debug",help="display intermediate results for debugging",action="store_true")
parser.add_argument("--show",help="show binarized output",action="store_true")
# parser.add_argument("--dpi",default=300,type=float,help="resolution (DPI) (300)")
parser.add_argument("-z","--zoom",type=float,default=1.0,help="rescale the image prior to processing")
parser.add_argument("--maxsize",type=int,default=300,help="maximum character component size")
parser.add_argument("--minsize",type=int,default=5,help="minimum character component size")
parser.add_argument("--binarize",action="store_true",help="always run binarization, even if image appears binary already")
parser.add_argument("--invert",action="store_true",help="invert the image prior to binarization")
parser.add_argument("--htrem",action="store_true",help="always remove halftones (even if there don't appear to be any)")
parser.add_argument("--nohtrem",action="store_true",help="never remove halftones (even if there appear to be some)")
parser.add_argument("--uncleaned",action="store_true",help="output only the deskewed binary image with no further cleanup")
parser.add_argument("--noskew",action="store_true",help="do not perform skew correction")
# sauvola
parser.add_argument("-s","--sigma",type=float,default=150,help="sigma arguent for Sauvola binarization")
parser.add_argument("-k","--k",type=float,default=0.3,help="k value for Sauvola binarization")
print
print "#"*10,(" ".join(sys.argv))[:60]
print
# hysteresis thresholding
# TBD
args = parser.parse_args()
args.files = ocrolib.glob_all(args.files)
if len(args.files)<1:
parser.print_help()
sys.exit(0)
if args.debug or args.show: args.parallel = 1
################################################################
# preprocessing
################################################################
import os,os.path
from pylab import *
from scipy.ndimage import filters
################################################################
### Binarization
################################################################
def is_binary(image):
"""Check whether an input image is binary"""
return sum(image==amin(image))+sum(image==amax(image)) > 0.99*image.size
def gsauvola(image,sigma=150.0,R=None,k=0.3,filter='uniform',scale=2.0):
"""Perform Sauvola-like binarization. This uses linear filters to
compute the local mean and variance at every pixel."""
if image.dtype==dtype('uint8'): image = image / 256.0
if len(image.shape)==3: image = mean(image,axis=2)
if filter=="gaussian":
filter = filters.gaussian_filter
elif filter=="uniform":
filter = filters.uniform_filter
else:
pass
scaled = interpolation.zoom(image,1.0/scale,order=0,mode='nearest')
s1 = filter(ones(scaled.shape),sigma)
sx = filter(scaled,sigma)
sxx = filter(scaled**2,sigma)
avg_ = sx / s1
stddev_ = maximum(sxx/s1 - avg_**2,0.0)**0.5
s0,s1 = avg_.shape
s0 = int(s0*scale)
s1 = int(s1*scale)
avg = zeros(image.shape)
interpolation.zoom(avg_,scale,output=avg[:s0,:s1],order=0,mode='nearest')
stddev = zeros(image.shape)
interpolation.zoom(stddev_,scale,output=stddev[:s0,:s1],order=0,mode='nearest')
if R is None: R = amax(stddev)
thresh = avg * (1.0 + k * (stddev / R - 1.0))
return array(255*(image>thresh),'uint8')
def inverse(image):
return amax(image)-image
################################################################
### Bounding-box operations.
################################################################
def bounding_boxes_math(image):
"""Compute the bounding boxes in the image; returns mathematical
coordinates."""
image = (image>mean([amax(image),amin(image)]))
image,ncomponents = measurements.label(image)
objects = measurements.find_objects(image)
result = []
h,w = image.shape
for o in objects:
y1 = h-o[0].start
y0 = h-o[0].stop
x0 = o[1].start
x1 = o[1].stop
c = (x0,y0,x1,y1)
result.append(c)
return result
def estimate_skew_angle(image,angles=linspace(-2.0,2.0,11)):
estimates = []
for a in angles:
v = mean(interpolation.rotate(image,a,order=0,mode='constant'),axis=1)
v = var(v)
estimates.append((v,a))
if args.debug>0:
plot([y for x,y in estimates],[x for x,y in estimates])
ginput(1,args.debug)
_,a = max(estimates)
return a
def check_contains_halftones(image,dpi=300.0):
"""Heuristic method for determining whether we should apply a halftone removal
algorithm."""
bboxes = bounding_boxes_math(image)
r = 4*dpi/300.0
big = 0
for b in bboxes:
x0,y0,x1,y1 = b
if x1-x0>r or y1-y0>r: big += 1
return big<0.3*len(bboxes)
def remove_small_components(image,r=3):
"""Remove any connected components that are smaller in both dimension than r"""
image,ncomponents = measurements.label(image)
objects = measurements.find_objects(image)
for i in range(len(objects)):
o = objects[i]
if o[0].stop-o[0].start>r: continue
if o[1].stop-o[1].start>r: continue
c = image[o]
c[c==i+1] = 0
return (image!=0)
def remove_big_components(image,r=100):
"""Remove any connected components that are smaller in any dimension than r"""
image,ncomponents = measurements.label(image)
objects = measurements.find_objects(image)
for i in range(len(objects)):
o = objects[i]
if o[0].stop-o[0].start<r and o[1].stop-o[1].start<r: continue
c = image[o]
c[c==i+1] = 0
return (image!=0)
def remove_small_any(image,r=3):
"""Remove both small connected components and small holes."""
image = remove_small_components(image,r=r)
image = amax(image)-image
image = remove_small_components(image,r=r)
image = amax(image)-image
return image
def rectangular_cover(image,minsize=5):
"""Cover the set of regions with their bounding boxes. This is
an image-to-image transformation."""
image,ncomponents = measurements.label(image)
objects = measurements.find_objects(image)
output = zeros(image.shape)
for i in range(len(objects)):
o = objects[i]
if o[0].stop-o[0].start<minsize: continue
if o[1].stop-o[1].start<minsize: continue
output[o] = 1
return output
def find_halftones(image,dpi=300.0,threshold=0.05,r=5,sigma=15.0,cover=1):
"""Find halftone regions in an image. First, find small components and
holes, then smooth their occurrences and threshold, finally compute
a rectangular cover of the thresholded and smoothed image."""
filtered = remove_small_any(image,r=r)
diff = ((image!=0)!=(filtered!=0))
density = filters.gaussian_filter(1.0*diff,sigma*dpi/300.0)
if cover:
return rectangular_cover(density>threshold)
else:
return maximum(diff,density>threshold)
def remove_halftones(image,dpi=300.0,threshold=0.05,r=5,sigma=15.0):
"""Perform halftone removal using find_halftones."""
halftones = find_halftones(image,dpi=dpi,threshold=threshold,r=r,sigma=sigma)
return maximum(image-amax(image)*halftones,0)
################################################################
### All preprocessing steps put together.
################################################################
def IMDEBUG(image,label):
if args.debug:
cla(); xlabel("half tone removal")
imshow(cleaned); ginput(1,9999)
def preprocess(raw,title=None):
if args.debug:
subplot(121); imshow(raw); ginput(1,0.001)
if title is not None: xlabel(title)
subplot(122)
# zoom if requested
if args.zoom!=1.0:
raw = interpolation.zoom(raw,args.zoom,mode='nearest',order=1)
IMDEBUG(raw,"zoomed")
# binarize if the image isn't already binary
if args.parallel<2: print "binarizing"
if args.binarize or not is_binary(raw):
bin = gsauvola(raw)
else:
bin = array(255*(raw>0.5*(amax(raw)+amin(raw))),'B')
assert amax(bin)>amin(bin),"something went wrong with binarization"
# invert or detect inverted scans
if args.invert:
raw = inverse(raw)
bin = inverse(bin)
IMDEBUG(bin,"binarized and inverted")
# now clean up for skew estimation
if args.parallel<2: print "cleaning"
cleaned = bin
if args.htrem or (not args.nohtrem and check_contains_halftones(bin)):
cleaned = remove_halftones(cleaned)
IMDEBUG(cleaned,"half tone removal")
if args.minsize>0:
cleaned = remove_small_components(cleaned,args.minsize)
IMDEBUG(cleaned,"minsize filtering")
if args.maxsize<10000:
cleaned = remove_big_components(cleaned,args.maxsize)
IMDEBUG(cleaned,"maxsize filtering")
# perform skew estimation
if args.noskew:
return cleaned,raw
else:
if args.parallel<2: print "estimating skew angle"
a = estimate_skew_angle(cleaned)
print "got",a
if args.uncleaned: bin = orig
if args.parallel<2: print "rotating"
flat = interpolation.rotate(raw,-a*180/pi,mode='nearest',order=0)
bin = interpolation.rotate(bin,-a*180/pi,mode='nearest',order=0)
bin = array(255*(bin>0.5*(amin(bin)+amax(bin))),'B')
IMDEBUG(bin,"skew correction by %f"%a)
if args.parallel<2: print "writing"
return bin,flat
################################################################
### main loop
################################################################
if args.debug or args.show: ion(); show()
files = None
def process1(job):
fname,count = job
if args.parallel<2: print "sauvola",fname,count
image = ocrolib.read_image_gray(fname)
if amax(image)<=amin(image)+1e-4:
print fname,"is empty"
return
IMDEBUG(image,"image")
title = None
if args.debug:
ion(); clf(); pylab.gray()
title = "%s %s"%(job,count)
try:
bin,flat = preprocess(image,title=title)
except:
traceback.print_exc()
print fname,"failed"
return
if args.show:
clf()
imshow(bin,cmap=cm.gray)
draw()
pylab.gray()
if args.output is not None:
ocrolib.write_image_gray(args.output+"/%04d.nrm.png"%count,flat,verbose=1)
ocrolib.write_image_binary(args.output+"/%04d.bin.png"%count,bin,verbose=1)
else:
base,_ = ocrolib.allsplitext(fname)
ocrolib.write_image_gray(base+".nrm.png",flat,verbose=1)
ocrolib.write_image_binary(base+".bin.png",bin,verbose=1)
if args.debug>0: args.parallel = 0
if args.output:
if not os.path.exists(args.output):
os.mkdir(args.output)
if args.parallel<2:
for i,f in enumerate(args.files):
process1((f,i+1))
else:
pool = multiprocessing.Pool(processes=args.parallel)
jobs = []
for i,f in enumerate(args.files): jobs += [(f,i+1)]
result = pool.map(process1,jobs)