forked from LMS-Community/slimserver
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathURI.pm
1019 lines (732 loc) · 29.6 KB
/
URI.pm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
package URI;
use strict;
use vars qw($VERSION);
$VERSION = "1.35"; # $Date: 2005-03-29 15:18:03 -0500 (Tue, 29 Mar 2005) $
use vars qw($ABS_REMOTE_LEADING_DOTS $ABS_ALLOW_RELATIVE_SCHEME);
my %implements; # mapping from scheme to implementor class
# Some "official" character classes
use vars qw($reserved $mark $unreserved $uric $scheme_re);
$reserved = q(;/?:@&=+$,[]);
$mark = q(-_.!~*()); #'; emacs
$unreserved = "A-Za-z0-9\Q$mark\E";
$uric = quotemeta($reserved) . $unreserved . "%";
$scheme_re = '[a-zA-Z][a-zA-Z0-9.+\-]*';
use Carp ();
use URI::Escape ();
use overload ('""' => sub { ${$_[0]} },
'==' => sub { overload::StrVal($_[0]) eq
overload::StrVal($_[1])
},
fallback => 1,
);
sub new
{
my($class, $uri, $scheme) = @_;
$uri = defined ($uri) ? "$uri" : ""; # stringify
# Get rid of potential wrapping
$uri =~ s/^<(?:URL:)?(.*)>$/$1/; #
$uri =~ s/^"(.*)"$/$1/;
$uri =~ s/^\s+//;
$uri =~ s/\s+$//;
my $impclass;
if ($uri =~ m/^($scheme_re):/so) {
$scheme = $1;
}
else {
if (($impclass = ref($scheme))) {
$scheme = $scheme->scheme;
}
elsif ($scheme && $scheme =~ m/^($scheme_re)(?::|$)/o) {
$scheme = $1;
}
}
$impclass ||= implementor($scheme) ||
do {
require URI::_foreign;
$impclass = 'URI::_foreign';
};
return $impclass->_init($uri, $scheme);
}
sub new_abs
{
my($class, $uri, $base) = @_;
$uri = $class->new($uri, $base);
$uri->abs($base);
}
sub _init
{
my $class = shift;
my($str, $scheme) = @_;
$str =~ s/([^$uric\#])/$URI::Escape::escapes{$1}/go;
$str = "$scheme:$str" unless $str =~ /^$scheme_re:/o ||
$class->_no_scheme_ok;
my $self = bless \$str, $class;
$self;
}
sub implementor
{
my($scheme, $impclass) = @_;
if (!$scheme || $scheme !~ /\A$scheme_re\z/o) {
require URI::_generic;
return "URI::_generic";
}
$scheme = lc($scheme);
if ($impclass) {
# Set the implementor class for a given scheme
my $old = $implements{$scheme};
$impclass->_init_implementor($scheme);
$implements{$scheme} = $impclass;
return $old;
}
my $ic = $implements{$scheme};
return $ic if $ic;
# scheme not yet known, look for internal or
# preloaded (with 'use') implementation
$ic = "URI::$scheme"; # default location
# turn scheme into a valid perl identifier by a simple tranformation...
$ic =~ s/\+/_P/g;
$ic =~ s/\./_O/g;
$ic =~ s/\-/_/g;
no strict 'refs';
# check we actually have one for the scheme:
unless (@{"${ic}::ISA"}) {
# Try to load it
eval "require $ic";
die $@ if $@ && $@ !~ /Can\'t locate.*in \@INC/;
return unless @{"${ic}::ISA"};
}
$ic->_init_implementor($scheme);
$implements{$scheme} = $ic;
$ic;
}
sub _init_implementor
{
my($class, $scheme) = @_;
# Remember that one implementor class may actually
# serve to implement several URI schemes.
}
sub clone
{
my $self = shift;
my $other = $$self;
bless \$other, ref $self;
}
sub _no_scheme_ok { 0 }
sub _scheme
{
my $self = shift;
unless (@_) {
return unless $$self =~ /^($scheme_re):/o;
return $1;
}
my $old;
my $new = shift;
if (defined($new) && length($new)) {
Carp::croak("Bad scheme '$new'") unless $new =~ /^$scheme_re$/o;
$old = $1 if $$self =~ s/^($scheme_re)://o;
my $newself = URI->new("$new:$$self");
$$self = $$newself;
bless $self, ref($newself);
}
else {
if ($self->_no_scheme_ok) {
$old = $1 if $$self =~ s/^($scheme_re)://o;
Carp::carp("Oops, opaque part now look like scheme")
if $^W && $$self =~ m/^$scheme_re:/o
}
else {
$old = $1 if $$self =~ m/^($scheme_re):/o;
}
}
return $old;
}
sub scheme
{
my $scheme = shift->_scheme(@_);
return unless defined $scheme;
lc($scheme);
}
sub opaque
{
my $self = shift;
unless (@_) {
$$self =~ /^(?:$scheme_re:)?([^\#]*)/o or die;
return $1;
}
$$self =~ /^($scheme_re:)? # optional scheme
([^\#]*) # opaque
(\#.*)? # optional fragment
$/sx or die;
my $old_scheme = $1;
my $old_opaque = $2;
my $old_frag = $3;
my $new_opaque = shift;
$new_opaque = "" unless defined $new_opaque;
$new_opaque =~ s/([^$uric])/$URI::Escape::escapes{$1}/go;
$$self = defined($old_scheme) ? $old_scheme : "";
$$self .= $new_opaque;
$$self .= $old_frag if defined $old_frag;
$old_opaque;
}
*path = \&opaque; # alias
sub fragment
{
my $self = shift;
unless (@_) {
return unless $$self =~ /\#(.*)/s;
return $1;
}
my $old;
$old = $1 if $$self =~ s/\#(.*)//s;
my $new_frag = shift;
if (defined $new_frag) {
$new_frag =~ s/([^$uric])/$URI::Escape::escapes{$1}/go;
$$self .= "#$new_frag";
}
$old;
}
sub as_string
{
my $self = shift;
$$self;
}
sub canonical
{
# Make sure scheme is lowercased, that we don't escape unreserved chars,
# and that we use upcase escape sequences.
my $self = shift;
my $scheme = $self->_scheme || "";
my $uc_scheme = $scheme =~ /[A-Z]/;
my $esc = $$self =~ /%[a-fA-F0-9]{2}/;
return $self unless $uc_scheme || $esc;
my $other = $self->clone;
if ($uc_scheme) {
$other->_scheme(lc $scheme);
}
if ($esc) {
$$other =~ s{%([0-9a-fA-F]{2})}
{ my $a = chr(hex($1));
$a =~ /^[$unreserved]\z/o ? $a : "%\U$1"
}ge;
}
return $other;
}
# Compare two URIs, subclasses will provide a more correct implementation
sub eq {
my($self, $other) = @_;
$self = URI->new($self, $other) unless ref $self;
$other = URI->new($other, $self) unless ref $other;
ref($self) eq ref($other) && # same class
$self->canonical->as_string eq $other->canonical->as_string;
}
# generic-URI transformation methods
sub abs { $_[0]; }
sub rel { $_[0]; }
# help out Storable
sub STORABLE_freeze {
my($self, $cloning) = @_;
return $$self;
}
sub STORABLE_thaw {
my($self, $cloning, $str) = @_;
$$self = $str;
}
1;
__END__
=head1 NAME
URI - Uniform Resource Identifiers (absolute and relative)
=head1 SYNOPSIS
$u1 = URI->new("http://www.perl.com");
$u2 = URI->new("foo", "http");
$u3 = $u2->abs($u1);
$u4 = $u3->clone;
$u5 = URI->new("HTTP://WWW.perl.com:80")->canonical;
$str = $u->as_string;
$str = "$u";
$scheme = $u->scheme;
$opaque = $u->opaque;
$path = $u->path;
$frag = $u->fragment;
$u->scheme("ftp");
$u->host("ftp.perl.com");
$u->path("cpan/");
=head1 DESCRIPTION
This module implements the C<URI> class. Objects of this class
represent "Uniform Resource Identifier references" as specified in RFC
2396 (and updated by RFC 2732).
A Uniform Resource Identifier is a compact string of characters that
identifies an abstract or physical resource. A Uniform Resource
Identifier can be further classified as either a Uniform Resource Locator
(URL) or a Uniform Resource Name (URN). The distinction between URL
and URN does not matter to the C<URI> class interface. A
"URI-reference" is a URI that may have additional information attached
in the form of a fragment identifier.
An absolute URI reference consists of three parts: a I<scheme>, a
I<scheme-specific part> and a I<fragment> identifier. A subset of URI
references share a common syntax for hierarchical namespaces. For
these, the scheme-specific part is further broken down into
I<authority>, I<path> and I<query> components. These URIs can also
take the form of relative URI references, where the scheme (and
usually also the authority) component is missing, but implied by the
context of the URI reference. The three forms of URI reference
syntax are summarized as follows:
<scheme>:<scheme-specific-part>#<fragment>
<scheme>://<authority><path>?<query>#<fragment>
<path>?<query>#<fragment>
The components into which a URI reference can be divided depend on the
I<scheme>. The C<URI> class provides methods to get and set the
individual components. The methods available for a specific
C<URI> object depend on the scheme.
=head1 CONSTRUCTORS
The following methods construct new C<URI> objects:
=over 4
=item $uri = URI->new( $str )
=item $uri = URI->new( $str, $scheme )
Constructs a new URI object. The string
representation of a URI is given as argument, together with an optional
scheme specification. Common URI wrappers like "" and <>, as well as
leading and trailing white space, are automatically removed from
the $str argument before it is processed further.
The constructor determines the scheme, maps this to an appropriate
URI subclass, constructs a new object of that class and returns it.
The $scheme argument is only used when $str is a
relative URI. It can be either a simple string that
denotes the scheme, a string containing an absolute URI reference, or
an absolute C<URI> object. If no $scheme is specified for a relative
URI $str, then $str is simply treated as a generic URI (no scheme-specific
methods available).
The set of characters available for building URI references is
restricted (see L<URI::Escape>). Characters outside this set are
automatically escaped by the URI constructor.
=item $uri = URI->new_abs( $str, $base_uri )
Constructs a new absolute URI object. The $str argument can
denote a relative or absolute URI. If relative, then it is
absolutized using $base_uri as base. The $base_uri must be an absolute
URI.
=item $uri = URI::file->new( $filename )
=item $uri = URI::file->new( $filename, $os )
Constructs a new I<file> URI from a file name. See L<URI::file>.
=item $uri = URI::file->new_abs( $filename )
=item $uri = URI::file->new_abs( $filename, $os )
Constructs a new absolute I<file> URI from a file name. See
L<URI::file>.
=item $uri = URI::file->cwd
Returns the current working directory as a I<file> URI. See
L<URI::file>.
=item $uri->clone
Returns a copy of the $uri.
=back
=head1 COMMON METHODS
The methods described in this section are available for all C<URI>
objects.
Methods that give access to components of a URI always return the
old value of the component. The value returned is C<undef> if the
component was not present. There is generally a difference between a
component that is empty (represented as C<"">) and a component that is
missing (represented as C<undef>). If an accessor method is given an
argument, it updates the corresponding component in addition to
returning the old value of the component. Passing an undefined
argument removes the component (if possible). The description of
each accessor method indicates whether the component is passed as
an escaped or an unescaped string. A component that can be further
divided into sub-parts are usually passed escaped, as unescaping might
change its semantics.
The common methods available for all URI are:
=over 4
=item $uri->scheme
=item $uri->scheme( $new_scheme )
Sets and returns the scheme part of the $uri. If the $uri is
relative, then $uri->scheme returns C<undef>. If called with an
argument, it updates the scheme of $uri, possibly changing the
class of $uri, and returns the old scheme value. The method croaks
if the new scheme name is illegal; a scheme name must begin with a
letter and must consist of only US-ASCII letters, numbers, and a few
special marks: ".", "+", "-". This restriction effectively means
that the scheme must be passed unescaped. Passing an undefined
argument to the scheme method makes the URI relative (if possible).
Letter case does not matter for scheme names. The string
returned by $uri->scheme is always lowercase. If you want the scheme
just as it was written in the URI in its original case,
you can use the $uri->_scheme method instead.
=item $uri->opaque
=item $uri->opaque( $new_opaque )
Sets and returns the scheme-specific part of the $uri
(everything between the scheme and the fragment)
as an escaped string.
=item $uri->path
=item $uri->path( $new_path )
Sets and returns the same value as $uri->opaque unless the URI
supports the generic syntax for hierarchical namespaces.
In that case the generic method is overridden to set and return
the part of the URI between the I<host name> and the I<fragment>.
=item $uri->fragment
=item $uri->fragment( $new_frag )
Returns the fragment identifier of a URI reference
as an escaped string.
=item $uri->as_string
Returns a URI object to a plain string. URI objects are
also converted to plain strings automatically by overloading. This
means that $uri objects can be used as plain strings in most Perl
constructs.
=item $uri->canonical
Returns a normalized version of the URI. The rules
for normalization are scheme-dependent. They usually involve
lowercasing the scheme and Internet host name components,
removing the explicit port specification if it matches the default port,
uppercasing all escape sequences, and unescaping octets that can be
better represented as plain characters.
For efficiency reasons, if the $uri is already in normalized form,
then a reference to it is returned instead of a copy.
=item $uri->eq( $other_uri )
=item URI::eq( $first_uri, $other_uri )
Tests whether two URI references are equal. URI references
that normalize to the same string are considered equal. The method
can also be used as a plain function which can also test two string
arguments.
If you need to test whether two C<URI> object references denote the
same object, use the '==' operator.
=item $uri->abs( $base_uri )
Returns an absolute URI reference. If $uri is already
absolute, then a reference to it is simply returned. If the $uri
is relative, then a new absolute URI is constructed by combining the
$uri and the $base_uri, and returned.
=item $uri->rel( $base_uri )
Returns a relative URI reference if it is possible to
make one that denotes the same resource relative to $base_uri.
If not, then $uri is simply returned.
=back
=head1 GENERIC METHODS
The following methods are available to schemes that use the
common/generic syntax for hierarchical namespaces. The descriptions of
schemes below indicate which these are. Unknown schemes are
assumed to support the generic syntax, and therefore the following
methods:
=over 4
=item $uri->authority
=item $uri->authority( $new_authority )
Sets and returns the escaped authority component
of the $uri.
=item $uri->path
=item $uri->path( $new_path )
Sets and returns the escaped path component of
the $uri (the part between the host name and the query or fragment).
The path can never be undefined, but it can be the empty string.
=item $uri->path_query
=item $uri->path_query( $new_path_query )
Sets and returns the escaped path and query
components as a single entity. The path and the query are
separated by a "?" character, but the query can itself contain "?".
=item $uri->path_segments
=item $uri->path_segments( $segment, ... )
Sets and returns the path. In a scalar context, it returns
the same value as $uri->path. In a list context, it returns the
unescaped path segments that make up the path. Path segments that
have parameters are returned as an anonymous array. The first element
is the unescaped path segment proper; subsequent elements are escaped
parameter strings. Such an anonymous array uses overloading so it can
be treated as a string too, but this string does not include the
parameters.
Note that absolute paths have the empty string as their first
I<path_segment>, i.e. the I<path> C</foo/bar> have 3
I<path_segments>; "", "foo" and "bar".
=item $uri->query
=item $uri->query( $new_query )
Sets and returns the escaped query component of
the $uri.
=item $uri->query_form
=item $uri->query_form( $key1 => $val1, $key2 => $val2, ... )
=item $uri->query_form( \@key_value_pairs )
=item $uri->query_form( \%hash )
Sets and returns query components that use the
I<application/x-www-form-urlencoded> format. Key/value pairs are
separated by "&", and the key is separated from the value by a "="
character.
The form can be set either by passing separate key/value pairs, or via
an array or hash reference. Passing an empty array or an empty hash
removes the query component, whereas passing no arguments at all leaves
the component unchanged. The order of keys is undefined if a hash
reference is passed. The old value is always returned as a list of
separate key/value pairs. Assigning this list to a hash is unwise as
the keys returned might repeat.
The values passed when setting the form can be plain strings or
references to arrays of strings. Passing an array of values has the
same effect as passing the key repeatedly with one value at a time.
All the following statements have the same effect:
$uri->query_form(foo => 1, foo => 2);
$uri->query_form(foo => [1, 2]);
$uri->query_form([ foo => 1, foo => 2 ]);
$uri->query_form([ foo => [1, 2] ]);
$uri->query_form({ foo => [1, 2] });
The C<URI::QueryParam> module can be loaded to add further methods to
manipulate the form of a URI. See L<URI::QueryParam> for details.
=item $uri->query_keywords
=item $uri->query_keywords( $keywords, ... )
=item $uri->query_keywords( \@keywords )
Sets and returns query components that use the
keywords separated by "+" format.
The keywords can be set either by passing separate keywords directly
or by passing a reference to an array of keywords. Passing an empty
array removes the query component, whereas passing no arguments at
all leaves the component unchanged. The old value is always returned
as a list of separate words.
=back
=head1 SERVER METHODS
For schemes where the I<authority> component denotes an Internet host,
the following methods are available in addition to the generic
methods.
=over 4
=item $uri->userinfo
=item $uri->userinfo( $new_userinfo )
Sets and returns the escaped userinfo part of the
authority component.
For some schemes this is a user name and a password separated by
a colon. This practice is not recommended. Embedding passwords in
clear text (such as URI) has proven to be a security risk in almost
every case where it has been used.
=item $uri->host
=item $uri->host( $new_host )
Sets and returns the unescaped hostname.
If the $new_host string ends with a colon and a number, then this
number also sets the port.
=item $uri->port
=item $uri->port( $new_port )
Sets and returns the port. The port is a simple integer
that should be greater than 0.
If a port is not specified explicitly in the URI, then the URI scheme's default port
is returned. If you don't want the default port
substituted, then you can use the $uri->_port method instead.
=item $uri->host_port
=item $uri->host_port( $new_host_port )
Sets and returns the host and port as a single
unit. The returned value includes a port, even if it matches the
default port. The host part and the port part are separated by a
colon: ":".
=item $uri->default_port
Returns the default port of the URI scheme to which $uri
belongs. For I<http> this is the number 80, for I<ftp> this
is the number 21, etc. The default port for a scheme can not be
changed.
=back
=head1 SCHEME-SPECIFIC SUPPORT
Scheme-specific support is provided for the following URI schemes. For C<URI>
objects that do not belong to one of these, you can only use the common and
generic methods.
=over 4
=item B<data>:
The I<data> URI scheme is specified in RFC 2397. It allows inclusion
of small data items as "immediate" data, as if it had been included
externally.
C<URI> objects belonging to the data scheme support the common methods
and two new methods to access their scheme-specific components:
$uri->media_type and $uri->data. See L<URI::data> for details.
=item B<file>:
An old specification of the I<file> URI scheme is found in RFC 1738.
A new RFC 2396 based specification in not available yet, but file URI
references are in common use.
C<URI> objects belonging to the file scheme support the common and
generic methods. In addition, they provide two methods for mapping file URIs
back to local file names; $uri->file and $uri->dir. See L<URI::file>
for details.
=item B<ftp>:
An old specification of the I<ftp> URI scheme is found in RFC 1738. A
new RFC 2396 based specification in not available yet, but ftp URI
references are in common use.
C<URI> objects belonging to the ftp scheme support the common,
generic and server methods. In addition, they provide two methods for
accessing the userinfo sub-components: $uri->user and $uri->password.
=item B<gopher>:
The I<gopher> URI scheme is specified in
<draft-murali-url-gopher-1996-12-04> and will hopefully be available
as a RFC 2396 based specification.
C<URI> objects belonging to the gopher scheme support the common,
generic and server methods. In addition, they support some methods for
accessing gopher-specific path components: $uri->gopher_type,
$uri->selector, $uri->search, $uri->string.
=item B<http>:
The I<http> URI scheme is specified in RFC 2616.
The scheme is used to reference resources hosted by HTTP servers.
C<URI> objects belonging to the http scheme support the common,
generic and server methods.
=item B<https>:
The I<https> URI scheme is a Netscape invention which is commonly
implemented. The scheme is used to reference HTTP servers through SSL
connections. Its syntax is the same as http, but the default
port is different.
=item B<ldap>:
The I<ldap> URI scheme is specified in RFC 2255. LDAP is the
Lightweight Directory Access Protocol. An ldap URI describes an LDAP
search operation to perform to retrieve information from an LDAP
directory.
C<URI> objects belonging to the ldap scheme support the common,
generic and server methods as well as ldap-specific methods: $uri->dn,
$uri->attributes, $uri->scope, $uri->filter, $uri->extensions. See
L<URI::ldap> for details.
=item B<ldapi>:
Like the I<ldap> URI scheme, but uses a UNIX domain socket. The
server methods are not supported, and the local socket path is
available as $uri->un_path. The I<ldapi> scheme is used by the
OpenLDAP package. There is no real specification for it, but it is
mentioned in various OpenLDAP manual pages.
=item B<ldaps>:
Like the I<ldap> URI scheme, but uses an SSL connection. This
scheme is deprecated, as the preferred way is to use the I<start_tls>
mechanism.
=item B<mailto>:
The I<mailto> URI scheme is specified in RFC 2368. The scheme was
originally used to designate the Internet mailing address of an
individual or service. It has (in RFC 2368) been extended to allow
setting of other mail header fields and the message body.
C<URI> objects belonging to the mailto scheme support the common
methods and the generic query methods. In addition, they support the
following mailto-specific methods: $uri->to, $uri->headers.
=item B<mms>:
The I<mms> URL specification can be found at L<http://sdp.ppona.com/>
C<URI> objects belonging to the mms scheme support the common,
generic, and server methods, with the exception of userinfo and
query-related sub-components.
=item B<news>:
The I<news>, I<nntp> and I<snews> URI schemes are specified in
<draft-gilman-news-url-01> and will hopefully be available as an RFC
2396 based specification soon.
C<URI> objects belonging to the news scheme support the common,
generic and server methods. In addition, they provide some methods to
access the path: $uri->group and $uri->message.
=item B<nntp>:
See I<news> scheme.
=item B<pop>:
The I<pop> URI scheme is specified in RFC 2384. The scheme is used to
reference a POP3 mailbox.
C<URI> objects belonging to the pop scheme support the common, generic
and server methods. In addition, they provide two methods to access the
userinfo components: $uri->user and $uri->auth
=item B<rlogin>:
An old specification of the I<rlogin> URI scheme is found in RFC
1738. C<URI> objects belonging to the rlogin scheme support the
common, generic and server methods.
=item B<rtsp>:
The I<rtsp> URL specification can be found in section 3.2 of RFC 2326.
C<URI> objects belonging to the rtsp scheme support the common,
generic, and server methods, with the exception of userinfo and
query-related sub-components.
=item B<rtspu>:
The I<rtspu> URI scheme is used to talk to RTSP servers over UDP
instead of TCP. The syntax is the same as rtsp.
=item B<rsync>:
Information about rsync is available from http://rsync.samba.org.
C<URI> objects belonging to the rsync scheme support the common,
generic and server methods. In addition, they provide methods to
access the userinfo sub-components: $uri->user and $uri->password.
=item B<sip>:
The I<sip> URI specification is described in sections 19.1 and 25
of RFC 3261. C<URI> objects belonging to the sip scheme support the
common, generic, and server methods with the exception of path related
sub-components. In addition, they provide two methods to get and set
I<sip> parameters: $uri->params_form and $uri->params.
=item B<sips>:
See I<sip> scheme. Its syntax is the same as sip, but the default
port is different.
=item B<snews>:
See I<news> scheme. Its syntax is the same as news, but the default
port is different.
=item B<telnet>:
An old specification of the I<telnet> URI scheme is found in RFC
1738. C<URI> objects belonging to the telnet scheme support the
common, generic and server methods.
=item B<tn3270>:
These URIs are used like I<telnet> URIs but for connections to IBM
mainframes. C<URI> objects belonging to the tn3270 scheme support the
common, generic and server methods.
=item B<ssh>:
Information about ssh is available at http://www.openssh.com/.
C<URI> objects belonging to the ssh scheme support the common,
generic and server methods. In addition, they provide methods to
access the userinfo sub-components: $uri->user and $uri->password.
=item B<urn>:
The syntax of Uniform Resource Names is specified in RFC 2141. C<URI>
objects belonging to the urn scheme provide the common methods, and also the
methods $uri->nid and $uri->nss, which return the Namespace Identifier
and the Namespace-Specific String respectively.
The Namespace Identifier basically works like the Scheme identifier of
URIs, and further divides the URN namespace. Namespace Identifier
assignments are maintained at
<http://www.iana.org/assignments/urn-namespaces>.
Letter case is not significant for the Namespace Identifier. It is
always returned in lower case by the $uri->nid method. The $uri->_nid
method can be used if you want it in its original case.
=item B<urn>:B<isbn>:
The C<urn:isbn:> namespace contains International Standard Book
Numbers (ISBNs) and is described in RFC 3187. A C<URI> object belonging
to this namespace has the following extra methods (if the
Business::ISBN module is available): $uri->isbn,
$uri->isbn_publisher_code, $uri->isbn_country_code, $uri->isbn_as_ean.
=item B<urn>:B<oid>:
The C<urn:oid:> namespace contains Object Identifiers (OIDs) and is
described in RFC 3061. An object identifier consists of sequences of digits
separated by dots. A C<URI> object belonging to this namespace has an
additional method called $uri->oid that can be used to get/set the oid
value. In a list context, oid numbers are returned as separate elements.
=back
=head1 CONFIGURATION VARIABLES
The following configuration variables influence how the class and its
methods behave:
=over 4
=item $URI::ABS_ALLOW_RELATIVE_SCHEME
Some older parsers used to allow the scheme name to be present in the
relative URL if it was the same as the base URL scheme. RFC 2396 says
that this should be avoided, but you can enable this old behaviour by
setting the $URI::ABS_ALLOW_RELATIVE_SCHEME variable to a TRUE value.
The difference is demonstrated by the following examples:
URI->new("http:foo")->abs("http://host/a/b")
==> "http:foo"
local $URI::ABS_ALLOW_RELATIVE_SCHEME = 1;
URI->new("http:foo")->abs("http://host/a/b")
==> "http:/host/a/foo"
=item $URI::ABS_REMOTE_LEADING_DOTS
You can also have the abs() method ignore excess ".."
segments in the relative URI by setting $URI::ABS_REMOTE_LEADING_DOTS
to a TRUE value. The difference is demonstrated by the following
examples:
URI->new("../../../foo")->abs("http://host/a/b")
==> "http://host/../../foo"
local $URI::ABS_REMOTE_LEADING_DOTS = 1;
URI->new("../../../foo")->abs("http://host/a/b")
==> "http://host/foo"
=back
=head1 BUGS
Using regexp variables like $1 directly as arguments to the URI methods
does not work too well with current perl implementations. I would argue
that this is actually a bug in perl. The workaround is to quote
them. Example:
/(...)/ || die;
$u->query("$1");
=head1 PARSING URIs WITH REGEXP
As an alternative to this module, the following (official) regular
expression can be used to decode a URI:
my($scheme, $authority, $path, $query, $fragment) =
$uri =~ m|(?:([^:/?#]+):)?(?://([^/?#]*))?([^?#]*)(?:\?([^#]*))?(?:#(.*))?|;
The C<URI::Split> module provides the function uri_split() as a
readable alternative.
=head1 SEE ALSO
L<URI::file>, L<URI::WithBase>, L<URI::QueryParam>, L<URI::Escape>,
L<URI::Split>, L<URI::Heuristic>
RFC 2396: "Uniform Resource Identifiers (URI): Generic Syntax",
Berners-Lee, Fielding, Masinter, August 1998.
http://www.iana.org/assignments/uri-schemes
http://www.iana.org/assignments/urn-namespaces
http://www.w3.org/Addressing/
=head1 COPYRIGHT
Copyright 1995-2003 Gisle Aas.
Copyright 1995 Martijn Koster.