forked from flang-compiler/f18-llvm-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
TraceDumper.cpp
914 lines (817 loc) · 32.3 KB
/
TraceDumper.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
//===-- TraceDumper.cpp ---------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "lldb/Target/TraceDumper.h"
#include "lldb/Core/Module.h"
#include "lldb/Symbol/CompileUnit.h"
#include "lldb/Symbol/Function.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/SectionLoadList.h"
#include <optional>
using namespace lldb;
using namespace lldb_private;
using namespace llvm;
/// \return
/// The given string or \b std::nullopt if it's empty.
static std::optional<const char *> ToOptionalString(const char *s) {
if (!s)
return std::nullopt;
return s;
}
static const char *GetModuleName(const SymbolContext &sc) {
if (!sc.module_sp)
return nullptr;
return sc.module_sp->GetFileSpec().GetFilename().AsCString();
}
/// \return
/// The module name (basename if the module is a file, or the actual name if
/// it's a virtual module), or \b nullptr if no name nor module was found.
static const char *GetModuleName(const TraceDumper::TraceItem &item) {
if (!item.symbol_info)
return nullptr;
return GetModuleName(item.symbol_info->sc);
}
// This custom LineEntry validator is neded because some line_entries have
// 0 as line, which is meaningless. Notice that LineEntry::IsValid only
// checks that line is not LLDB_INVALID_LINE_NUMBER, i.e. UINT32_MAX.
static bool IsLineEntryValid(const LineEntry &line_entry) {
return line_entry.IsValid() && line_entry.line > 0;
}
/// \return
/// \b true if the provided line entries match line, column and source file.
/// This function assumes that the line entries are valid.
static bool FileLineAndColumnMatches(const LineEntry &a, const LineEntry &b) {
if (a.line != b.line)
return false;
if (a.column != b.column)
return false;
return a.GetFile() == b.GetFile();
}
/// Compare the symbol contexts of the provided \a SymbolInfo
/// objects.
///
/// \return
/// \a true if both instructions belong to the same scope level analized
/// in the following order:
/// - module
/// - symbol
/// - function
/// - inlined function
/// - source line info
static bool
IsSameInstructionSymbolContext(const TraceDumper::SymbolInfo &prev_insn,
const TraceDumper::SymbolInfo &insn,
bool check_source_line_info = true) {
// module checks
if (insn.sc.module_sp != prev_insn.sc.module_sp)
return false;
// symbol checks
if (insn.sc.symbol != prev_insn.sc.symbol)
return false;
// function checks
if (!insn.sc.function && !prev_insn.sc.function)
return true; // This means two dangling instruction in the same module. We
// can assume they are part of the same unnamed symbol
else if (insn.sc.function != prev_insn.sc.function)
return false;
Block *inline_block_a =
insn.sc.block ? insn.sc.block->GetContainingInlinedBlock() : nullptr;
Block *inline_block_b = prev_insn.sc.block
? prev_insn.sc.block->GetContainingInlinedBlock()
: nullptr;
if (inline_block_a != inline_block_b)
return false;
// line entry checks
if (!check_source_line_info)
return true;
const bool curr_line_valid = IsLineEntryValid(insn.sc.line_entry);
const bool prev_line_valid = IsLineEntryValid(prev_insn.sc.line_entry);
if (curr_line_valid && prev_line_valid)
return FileLineAndColumnMatches(insn.sc.line_entry,
prev_insn.sc.line_entry);
return curr_line_valid == prev_line_valid;
}
class OutputWriterCLI : public TraceDumper::OutputWriter {
public:
OutputWriterCLI(Stream &s, const TraceDumperOptions &options, Thread &thread)
: m_s(s), m_options(options) {
m_s.Format("thread #{0}: tid = {1}\n", thread.GetIndexID(), thread.GetID());
};
void NoMoreData() override { m_s << " no more data\n"; }
void FunctionCallForest(
const std::vector<TraceDumper::FunctionCallUP> &forest) override {
for (size_t i = 0; i < forest.size(); i++) {
m_s.Format("\n[call tree #{0}]\n", i);
DumpFunctionCallTree(*forest[i]);
}
}
void TraceItem(const TraceDumper::TraceItem &item) override {
if (item.symbol_info) {
if (!item.prev_symbol_info ||
!IsSameInstructionSymbolContext(*item.prev_symbol_info,
*item.symbol_info)) {
m_s << " ";
const char *module_name = GetModuleName(item);
if (!module_name)
m_s << "(none)";
else if (!item.symbol_info->sc.function && !item.symbol_info->sc.symbol)
m_s.Format("{0}`(none)", module_name);
else
item.symbol_info->sc.DumpStopContext(
&m_s, item.symbol_info->exe_ctx.GetTargetPtr(),
item.symbol_info->address,
/*show_fullpaths=*/false,
/*show_module=*/true, /*show_inlined_frames=*/false,
/*show_function_arguments=*/true,
/*show_function_name=*/true);
m_s << "\n";
}
}
if (item.error && !m_was_prev_instruction_an_error)
m_s << " ...missing instructions\n";
m_s.Format(" {0}: ", item.id);
if (m_options.show_timestamps) {
m_s.Format("[{0}] ", item.timestamp
? formatv("{0:3} ns", *item.timestamp).str()
: "unavailable");
}
if (item.event) {
m_s << "(event) " << TraceCursor::EventKindToString(*item.event);
switch (*item.event) {
case eTraceEventCPUChanged:
m_s.Format(" [new CPU={0}]",
item.cpu_id ? std::to_string(*item.cpu_id) : "unavailable");
break;
case eTraceEventHWClockTick:
m_s.Format(" [{0}]", item.hw_clock ? std::to_string(*item.hw_clock)
: "unavailable");
break;
case eTraceEventDisabledHW:
case eTraceEventDisabledSW:
break;
case eTraceEventSyncPoint:
m_s.Format(" [{0}]", item.sync_point_metadata);
break;
}
} else if (item.error) {
m_s << "(error) " << *item.error;
} else {
m_s.Format("{0:x+16}", item.load_address);
if (item.symbol_info && item.symbol_info->instruction) {
m_s << " ";
item.symbol_info->instruction->Dump(
&m_s, /*max_opcode_byte_size=*/0,
/*show_address=*/false,
/*show_bytes=*/false, m_options.show_control_flow_kind,
&item.symbol_info->exe_ctx, &item.symbol_info->sc,
/*prev_sym_ctx=*/nullptr,
/*disassembly_addr_format=*/nullptr,
/*max_address_text_size=*/0);
}
}
m_was_prev_instruction_an_error = (bool)item.error;
m_s << "\n";
}
private:
void
DumpSegmentContext(const TraceDumper::FunctionCall::TracedSegment &segment) {
if (segment.GetOwningCall().IsError()) {
m_s << "<tracing errors>";
return;
}
const SymbolContext &first_sc = segment.GetFirstInstructionSymbolInfo().sc;
first_sc.DumpStopContext(
&m_s, segment.GetFirstInstructionSymbolInfo().exe_ctx.GetTargetPtr(),
segment.GetFirstInstructionSymbolInfo().address,
/*show_fullpaths=*/false,
/*show_module=*/true, /*show_inlined_frames=*/false,
/*show_function_arguments=*/true,
/*show_function_name=*/true);
m_s << " to ";
const SymbolContext &last_sc = segment.GetLastInstructionSymbolInfo().sc;
if (IsLineEntryValid(first_sc.line_entry) &&
IsLineEntryValid(last_sc.line_entry)) {
m_s.Format("{0}:{1}", last_sc.line_entry.line, last_sc.line_entry.column);
} else {
last_sc.DumpStopContext(
&m_s, segment.GetFirstInstructionSymbolInfo().exe_ctx.GetTargetPtr(),
segment.GetLastInstructionSymbolInfo().address,
/*show_fullpaths=*/false,
/*show_module=*/false, /*show_inlined_frames=*/false,
/*show_function_arguments=*/false,
/*show_function_name=*/false);
}
}
void DumpUntracedContext(const TraceDumper::FunctionCall &function_call) {
if (function_call.IsError()) {
m_s << "tracing error";
}
const SymbolContext &sc = function_call.GetSymbolInfo().sc;
const char *module_name = GetModuleName(sc);
if (!module_name)
m_s << "(none)";
else if (!sc.function && !sc.symbol)
m_s << module_name << "`(none)";
else
m_s << module_name << "`" << sc.GetFunctionName().AsCString();
}
void DumpFunctionCallTree(const TraceDumper::FunctionCall &function_call) {
if (function_call.GetUntracedPrefixSegment()) {
m_s.Indent();
DumpUntracedContext(function_call);
m_s << "\n";
m_s.IndentMore();
DumpFunctionCallTree(function_call.GetUntracedPrefixSegment()->GetNestedCall());
m_s.IndentLess();
}
for (const TraceDumper::FunctionCall::TracedSegment &segment :
function_call.GetTracedSegments()) {
m_s.Indent();
DumpSegmentContext(segment);
m_s.Format(" [{0}, {1}]\n", segment.GetFirstInstructionID(),
segment.GetLastInstructionID());
segment.IfNestedCall([&](const TraceDumper::FunctionCall &nested_call) {
m_s.IndentMore();
DumpFunctionCallTree(nested_call);
m_s.IndentLess();
});
}
}
Stream &m_s;
TraceDumperOptions m_options;
bool m_was_prev_instruction_an_error = false;
};
class OutputWriterJSON : public TraceDumper::OutputWriter {
/* schema:
error_message: string
| {
"event": string,
"id": decimal,
"tsc"?: string decimal,
"cpuId"? decimal,
} | {
"error": string,
"id": decimal,
"tsc"?: string decimal,
| {
"loadAddress": string decimal,
"id": decimal,
"hwClock"?: string decimal,
"syncPointMetadata"?: string,
"timestamp_ns"?: string decimal,
"module"?: string,
"symbol"?: string,
"line"?: decimal,
"column"?: decimal,
"source"?: string,
"mnemonic"?: string,
"controlFlowKind"?: string,
}
*/
public:
OutputWriterJSON(Stream &s, const TraceDumperOptions &options)
: m_s(s), m_options(options),
m_j(m_s.AsRawOstream(),
/*IndentSize=*/options.pretty_print_json ? 2 : 0) {
m_j.arrayBegin();
};
~OutputWriterJSON() { m_j.arrayEnd(); }
void FunctionCallForest(
const std::vector<TraceDumper::FunctionCallUP> &forest) override {
for (size_t i = 0; i < forest.size(); i++) {
m_j.object([&] { DumpFunctionCallTree(*forest[i]); });
}
}
void DumpFunctionCallTree(const TraceDumper::FunctionCall &function_call) {
if (function_call.GetUntracedPrefixSegment()) {
m_j.attributeObject("untracedPrefixSegment", [&] {
m_j.attributeObject("nestedCall", [&] {
DumpFunctionCallTree(
function_call.GetUntracedPrefixSegment()->GetNestedCall());
});
});
}
if (!function_call.GetTracedSegments().empty()) {
m_j.attributeArray("tracedSegments", [&] {
for (const TraceDumper::FunctionCall::TracedSegment &segment :
function_call.GetTracedSegments()) {
m_j.object([&] {
m_j.attribute("firstInstructionId",
std::to_string(segment.GetFirstInstructionID()));
m_j.attribute("lastInstructionId",
std::to_string(segment.GetLastInstructionID()));
segment.IfNestedCall(
[&](const TraceDumper::FunctionCall &nested_call) {
m_j.attributeObject(
"nestedCall", [&] { DumpFunctionCallTree(nested_call); });
});
});
}
});
}
}
void DumpEvent(const TraceDumper::TraceItem &item) {
m_j.attribute("event", TraceCursor::EventKindToString(*item.event));
switch (*item.event) {
case eTraceEventCPUChanged:
m_j.attribute("cpuId", item.cpu_id);
break;
case eTraceEventHWClockTick:
m_j.attribute("hwClock", item.hw_clock);
break;
case eTraceEventDisabledHW:
case eTraceEventDisabledSW:
break;
case eTraceEventSyncPoint:
m_j.attribute("syncPointMetadata", item.sync_point_metadata);
break;
}
}
void DumpInstruction(const TraceDumper::TraceItem &item) {
m_j.attribute("loadAddress", formatv("{0:x}", item.load_address));
if (item.symbol_info) {
m_j.attribute("module", ToOptionalString(GetModuleName(item)));
m_j.attribute(
"symbol",
ToOptionalString(item.symbol_info->sc.GetFunctionName().AsCString()));
if (lldb::InstructionSP instruction = item.symbol_info->instruction) {
ExecutionContext exe_ctx = item.symbol_info->exe_ctx;
m_j.attribute("mnemonic",
ToOptionalString(instruction->GetMnemonic(&exe_ctx)));
if (m_options.show_control_flow_kind) {
lldb::InstructionControlFlowKind instruction_control_flow_kind =
instruction->GetControlFlowKind(&exe_ctx);
m_j.attribute("controlFlowKind",
ToOptionalString(
Instruction::GetNameForInstructionControlFlowKind(
instruction_control_flow_kind)));
}
}
if (IsLineEntryValid(item.symbol_info->sc.line_entry)) {
m_j.attribute(
"source",
ToOptionalString(
item.symbol_info->sc.line_entry.GetFile().GetPath().c_str()));
m_j.attribute("line", item.symbol_info->sc.line_entry.line);
m_j.attribute("column", item.symbol_info->sc.line_entry.column);
}
}
}
void TraceItem(const TraceDumper::TraceItem &item) override {
m_j.object([&] {
m_j.attribute("id", item.id);
if (m_options.show_timestamps)
m_j.attribute("timestamp_ns", item.timestamp
? std::optional<std::string>(
std::to_string(*item.timestamp))
: std::nullopt);
if (item.event) {
DumpEvent(item);
} else if (item.error) {
m_j.attribute("error", *item.error);
} else {
DumpInstruction(item);
}
});
}
private:
Stream &m_s;
TraceDumperOptions m_options;
json::OStream m_j;
};
static std::unique_ptr<TraceDumper::OutputWriter>
CreateWriter(Stream &s, const TraceDumperOptions &options, Thread &thread) {
if (options.json)
return std::unique_ptr<TraceDumper::OutputWriter>(
new OutputWriterJSON(s, options));
else
return std::unique_ptr<TraceDumper::OutputWriter>(
new OutputWriterCLI(s, options, thread));
}
TraceDumper::TraceDumper(lldb::TraceCursorSP cursor_sp, Stream &s,
const TraceDumperOptions &options)
: m_cursor_sp(std::move(cursor_sp)), m_options(options),
m_writer_up(CreateWriter(
s, m_options, *m_cursor_sp->GetExecutionContextRef().GetThreadSP())) {
if (m_options.id)
m_cursor_sp->GoToId(*m_options.id);
else if (m_options.forwards)
m_cursor_sp->Seek(0, lldb::eTraceCursorSeekTypeBeginning);
else
m_cursor_sp->Seek(0, lldb::eTraceCursorSeekTypeEnd);
m_cursor_sp->SetForwards(m_options.forwards);
if (m_options.skip) {
m_cursor_sp->Seek((m_options.forwards ? 1 : -1) * *m_options.skip,
lldb::eTraceCursorSeekTypeCurrent);
}
}
TraceDumper::TraceItem TraceDumper::CreatRawTraceItem() {
TraceItem item = {};
item.id = m_cursor_sp->GetId();
if (m_options.show_timestamps)
item.timestamp = m_cursor_sp->GetWallClockTime();
return item;
}
/// Find the symbol context for the given address reusing the previous
/// instruction's symbol context when possible.
static SymbolContext
CalculateSymbolContext(const Address &address,
const SymbolContext &prev_symbol_context) {
lldb_private::AddressRange range;
if (prev_symbol_context.GetAddressRange(eSymbolContextEverything, 0,
/*inline_block_range*/ true, range) &&
range.Contains(address))
return prev_symbol_context;
SymbolContext sc;
address.CalculateSymbolContext(&sc, eSymbolContextEverything);
return sc;
}
/// Find the disassembler for the given address reusing the previous
/// instruction's disassembler when possible.
static std::tuple<DisassemblerSP, InstructionSP>
CalculateDisass(const TraceDumper::SymbolInfo &symbol_info,
const TraceDumper::SymbolInfo &prev_symbol_info,
const ExecutionContext &exe_ctx) {
if (prev_symbol_info.disassembler) {
if (InstructionSP instruction =
prev_symbol_info.disassembler->GetInstructionList()
.GetInstructionAtAddress(symbol_info.address))
return std::make_tuple(prev_symbol_info.disassembler, instruction);
}
if (symbol_info.sc.function) {
if (DisassemblerSP disassembler =
symbol_info.sc.function->GetInstructions(exe_ctx, nullptr)) {
if (InstructionSP instruction =
disassembler->GetInstructionList().GetInstructionAtAddress(
symbol_info.address))
return std::make_tuple(disassembler, instruction);
}
}
// We fallback to a single instruction disassembler
Target &target = exe_ctx.GetTargetRef();
const ArchSpec arch = target.GetArchitecture();
lldb_private::AddressRange range(symbol_info.address,
arch.GetMaximumOpcodeByteSize());
DisassemblerSP disassembler =
Disassembler::DisassembleRange(arch, /*plugin_name*/ nullptr,
/*flavor*/ nullptr, target, range);
return std::make_tuple(
disassembler,
disassembler ? disassembler->GetInstructionList().GetInstructionAtAddress(
symbol_info.address)
: InstructionSP());
}
static TraceDumper::SymbolInfo
CalculateSymbolInfo(const ExecutionContext &exe_ctx, lldb::addr_t load_address,
const TraceDumper::SymbolInfo &prev_symbol_info) {
TraceDumper::SymbolInfo symbol_info;
symbol_info.exe_ctx = exe_ctx;
symbol_info.address.SetLoadAddress(load_address, exe_ctx.GetTargetPtr());
symbol_info.sc =
CalculateSymbolContext(symbol_info.address, prev_symbol_info.sc);
std::tie(symbol_info.disassembler, symbol_info.instruction) =
CalculateDisass(symbol_info, prev_symbol_info, exe_ctx);
return symbol_info;
}
std::optional<lldb::user_id_t> TraceDumper::DumpInstructions(size_t count) {
ThreadSP thread_sp = m_cursor_sp->GetExecutionContextRef().GetThreadSP();
SymbolInfo prev_symbol_info;
std::optional<lldb::user_id_t> last_id;
ExecutionContext exe_ctx;
thread_sp->GetProcess()->GetTarget().CalculateExecutionContext(exe_ctx);
for (size_t insn_seen = 0; insn_seen < count && m_cursor_sp->HasValue();
m_cursor_sp->Next()) {
last_id = m_cursor_sp->GetId();
TraceItem item = CreatRawTraceItem();
if (m_cursor_sp->IsEvent() && m_options.show_events) {
item.event = m_cursor_sp->GetEventType();
switch (*item.event) {
case eTraceEventCPUChanged:
item.cpu_id = m_cursor_sp->GetCPU();
break;
case eTraceEventHWClockTick:
item.hw_clock = m_cursor_sp->GetHWClock();
break;
case eTraceEventDisabledHW:
case eTraceEventDisabledSW:
break;
case eTraceEventSyncPoint:
item.sync_point_metadata = m_cursor_sp->GetSyncPointMetadata();
break;
}
m_writer_up->TraceItem(item);
} else if (m_cursor_sp->IsError()) {
item.error = m_cursor_sp->GetError();
m_writer_up->TraceItem(item);
} else if (m_cursor_sp->IsInstruction() && !m_options.only_events) {
insn_seen++;
item.load_address = m_cursor_sp->GetLoadAddress();
if (!m_options.raw) {
SymbolInfo symbol_info =
CalculateSymbolInfo(exe_ctx, item.load_address, prev_symbol_info);
item.prev_symbol_info = prev_symbol_info;
item.symbol_info = symbol_info;
prev_symbol_info = symbol_info;
}
m_writer_up->TraceItem(item);
}
}
if (!m_cursor_sp->HasValue())
m_writer_up->NoMoreData();
return last_id;
}
void TraceDumper::FunctionCall::TracedSegment::AppendInsn(
const TraceCursorSP &cursor_sp,
const TraceDumper::SymbolInfo &symbol_info) {
m_last_insn_id = cursor_sp->GetId();
m_last_symbol_info = symbol_info;
}
lldb::user_id_t
TraceDumper::FunctionCall::TracedSegment::GetFirstInstructionID() const {
return m_first_insn_id;
}
lldb::user_id_t
TraceDumper::FunctionCall::TracedSegment::GetLastInstructionID() const {
return m_last_insn_id;
}
void TraceDumper::FunctionCall::TracedSegment::IfNestedCall(
std::function<void(const FunctionCall &function_call)> callback) const {
if (m_nested_call)
callback(*m_nested_call);
}
const TraceDumper::FunctionCall &
TraceDumper::FunctionCall::TracedSegment::GetOwningCall() const {
return m_owning_call;
}
TraceDumper::FunctionCall &
TraceDumper::FunctionCall::TracedSegment::CreateNestedCall(
const TraceCursorSP &cursor_sp,
const TraceDumper::SymbolInfo &symbol_info) {
m_nested_call = std::make_unique<FunctionCall>(cursor_sp, symbol_info);
m_nested_call->SetParentCall(m_owning_call);
return *m_nested_call;
}
const TraceDumper::SymbolInfo &
TraceDumper::FunctionCall::TracedSegment::GetFirstInstructionSymbolInfo()
const {
return m_first_symbol_info;
}
const TraceDumper::SymbolInfo &
TraceDumper::FunctionCall::TracedSegment::GetLastInstructionSymbolInfo() const {
return m_last_symbol_info;
}
const TraceDumper::FunctionCall &
TraceDumper::FunctionCall::UntracedPrefixSegment::GetNestedCall() const {
return *m_nested_call;
}
TraceDumper::FunctionCall::FunctionCall(
const TraceCursorSP &cursor_sp,
const TraceDumper::SymbolInfo &symbol_info) {
m_is_error = cursor_sp->IsError();
AppendSegment(cursor_sp, symbol_info);
}
void TraceDumper::FunctionCall::AppendSegment(
const TraceCursorSP &cursor_sp,
const TraceDumper::SymbolInfo &symbol_info) {
m_traced_segments.emplace_back(cursor_sp, symbol_info, *this);
}
const TraceDumper::SymbolInfo &
TraceDumper::FunctionCall::GetSymbolInfo() const {
return m_traced_segments.back().GetLastInstructionSymbolInfo();
}
bool TraceDumper::FunctionCall::IsError() const { return m_is_error; }
const std::deque<TraceDumper::FunctionCall::TracedSegment> &
TraceDumper::FunctionCall::GetTracedSegments() const {
return m_traced_segments;
}
TraceDumper::FunctionCall::TracedSegment &
TraceDumper::FunctionCall::GetLastTracedSegment() {
return m_traced_segments.back();
}
const std::optional<TraceDumper::FunctionCall::UntracedPrefixSegment> &
TraceDumper::FunctionCall::GetUntracedPrefixSegment() const {
return m_untraced_prefix_segment;
}
void TraceDumper::FunctionCall::SetUntracedPrefixSegment(
TraceDumper::FunctionCallUP &&nested_call) {
m_untraced_prefix_segment.emplace(std::move(nested_call));
}
TraceDumper::FunctionCall *TraceDumper::FunctionCall::GetParentCall() const {
return m_parent_call;
}
void TraceDumper::FunctionCall::SetParentCall(
TraceDumper::FunctionCall &parent_call) {
m_parent_call = &parent_call;
}
/// Given an instruction that happens after a return, find the ancestor function
/// call that owns it. If this ancestor doesn't exist, create a new ancestor and
/// make it the root of the tree.
///
/// \param[in] last_function_call
/// The function call that performs the return.
///
/// \param[in] symbol_info
/// The symbol information of the instruction after the return.
///
/// \param[in] cursor_sp
/// The cursor pointing to the instruction after the return.
///
/// \param[in,out] roots
/// The object owning the roots. It might be modified if a new root needs to
/// be created.
///
/// \return
/// A reference to the function call that owns the new instruction
static TraceDumper::FunctionCall &AppendReturnedInstructionToFunctionCallForest(
TraceDumper::FunctionCall &last_function_call,
const TraceDumper::SymbolInfo &symbol_info, const TraceCursorSP &cursor_sp,
std::vector<TraceDumper::FunctionCallUP> &roots) {
// We omit the current node because we can't return to itself.
TraceDumper::FunctionCall *ancestor = last_function_call.GetParentCall();
for (; ancestor; ancestor = ancestor->GetParentCall()) {
// This loop traverses the tree until it finds a call that we can return to.
if (IsSameInstructionSymbolContext(ancestor->GetSymbolInfo(), symbol_info,
/*check_source_line_info=*/false)) {
// We returned to this symbol, so we are assuming we are returning there
// Note: If this is not robust enough, we should actually check if we
// returning to the instruction that follows the last instruction from
// that call, as that's the behavior of CALL instructions.
ancestor->AppendSegment(cursor_sp, symbol_info);
return *ancestor;
}
}
// We didn't find the call we were looking for, so we now create a synthetic
// one that will contain the new instruction in its first traced segment.
TraceDumper::FunctionCallUP new_root =
std::make_unique<TraceDumper::FunctionCall>(cursor_sp, symbol_info);
// This new root will own the previous root through an untraced prefix segment.
new_root->SetUntracedPrefixSegment(std::move(roots.back()));
roots.pop_back();
// We update the roots container to point to the new root
roots.emplace_back(std::move(new_root));
return *roots.back();
}
/// Append an instruction to a function call forest. The new instruction might
/// be appended to the current segment, to a new nest call, or return to an
/// ancestor call.
///
/// \param[in] exe_ctx
/// The exeuction context of the traced thread.
///
/// \param[in] last_function_call
/// The chronologically most recent function call before the new instruction.
///
/// \param[in] prev_symbol_info
/// The symbol information of the previous instruction in the trace.
///
/// \param[in] symbol_info
/// The symbol information of the new instruction.
///
/// \param[in] cursor_sp
/// The cursor pointing to the new instruction.
///
/// \param[in,out] roots
/// The object owning the roots. It might be modified if a new root needs to
/// be created.
///
/// \return
/// A reference to the function call that owns the new instruction.
static TraceDumper::FunctionCall &AppendInstructionToFunctionCallForest(
const ExecutionContext &exe_ctx,
TraceDumper::FunctionCall *last_function_call,
const TraceDumper::SymbolInfo &prev_symbol_info,
const TraceDumper::SymbolInfo &symbol_info, const TraceCursorSP &cursor_sp,
std::vector<TraceDumper::FunctionCallUP> &roots) {
if (!last_function_call || last_function_call->IsError()) {
// We create a brand new root
roots.emplace_back(
std::make_unique<TraceDumper::FunctionCall>(cursor_sp, symbol_info));
return *roots.back();
}
lldb_private::AddressRange range;
if (symbol_info.sc.GetAddressRange(
eSymbolContextBlock | eSymbolContextFunction | eSymbolContextSymbol,
0, /*inline_block_range*/ true, range)) {
if (range.GetBaseAddress() == symbol_info.address) {
// Our instruction is the first instruction of a function. This has
// to be a call. This should also identify if a trampoline or the linker
// is making a call using a non-CALL instruction.
return last_function_call->GetLastTracedSegment().CreateNestedCall(
cursor_sp, symbol_info);
}
}
if (IsSameInstructionSymbolContext(prev_symbol_info, symbol_info,
/*check_source_line_info=*/false)) {
// We are still in the same function. This can't be a call because otherwise
// we would be in the first instruction of the symbol.
last_function_call->GetLastTracedSegment().AppendInsn(cursor_sp,
symbol_info);
return *last_function_call;
}
// Now we are in a different symbol. Let's see if this is a return or a
// call
const InstructionSP &insn = last_function_call->GetLastTracedSegment()
.GetLastInstructionSymbolInfo()
.instruction;
InstructionControlFlowKind insn_kind =
insn ? insn->GetControlFlowKind(&exe_ctx)
: eInstructionControlFlowKindOther;
switch (insn_kind) {
case lldb::eInstructionControlFlowKindCall:
case lldb::eInstructionControlFlowKindFarCall: {
// This is a regular call
return last_function_call->GetLastTracedSegment().CreateNestedCall(
cursor_sp, symbol_info);
}
case lldb::eInstructionControlFlowKindFarReturn:
case lldb::eInstructionControlFlowKindReturn: {
// We should have caught most trampolines and linker functions earlier, so
// let's assume this is a regular return.
return AppendReturnedInstructionToFunctionCallForest(
*last_function_call, symbol_info, cursor_sp, roots);
}
default:
// we changed symbols not using a call or return and we are not in the
// beginning of a symbol, so this should be something very artificial
// or maybe a jump to some label in the middle of it section.
// We first check if it's a return from an inline method
if (prev_symbol_info.sc.block &&
prev_symbol_info.sc.block->GetContainingInlinedBlock()) {
return AppendReturnedInstructionToFunctionCallForest(
*last_function_call, symbol_info, cursor_sp, roots);
}
// Now We assume it's a call. We should revisit this in the future.
// Ideally we should be able to decide whether to create a new tree,
// or go deeper or higher in the stack.
return last_function_call->GetLastTracedSegment().CreateNestedCall(
cursor_sp, symbol_info);
}
}
/// Append an error to a function call forest. The new error might be appended
/// to the current segment if it contains errors or will create a new root.
///
/// \param[in] last_function_call
/// The chronologically most recent function call before the new error.
///
/// \param[in] cursor_sp
/// The cursor pointing to the new error.
///
/// \param[in,out] roots
/// The object owning the roots. It might be modified if a new root needs to
/// be created.
///
/// \return
/// A reference to the function call that owns the new error.
TraceDumper::FunctionCall &AppendErrorToFunctionCallForest(
TraceDumper::FunctionCall *last_function_call, TraceCursorSP &cursor_sp,
std::vector<TraceDumper::FunctionCallUP> &roots) {
if (last_function_call && last_function_call->IsError()) {
last_function_call->GetLastTracedSegment().AppendInsn(
cursor_sp, TraceDumper::SymbolInfo{});
return *last_function_call;
} else {
roots.emplace_back(std::make_unique<TraceDumper::FunctionCall>(
cursor_sp, TraceDumper::SymbolInfo{}));
return *roots.back();
}
}
static std::vector<TraceDumper::FunctionCallUP>
CreateFunctionCallForest(TraceCursorSP &cursor_sp,
const ExecutionContext &exe_ctx) {
std::vector<TraceDumper::FunctionCallUP> roots;
TraceDumper::SymbolInfo prev_symbol_info;
TraceDumper::FunctionCall *last_function_call = nullptr;
for (; cursor_sp->HasValue(); cursor_sp->Next()) {
if (cursor_sp->IsError()) {
last_function_call = &AppendErrorToFunctionCallForest(last_function_call,
cursor_sp, roots);
prev_symbol_info = {};
} else if (cursor_sp->IsInstruction()) {
TraceDumper::SymbolInfo symbol_info = CalculateSymbolInfo(
exe_ctx, cursor_sp->GetLoadAddress(), prev_symbol_info);
last_function_call = &AppendInstructionToFunctionCallForest(
exe_ctx, last_function_call, prev_symbol_info, symbol_info, cursor_sp,
roots);
prev_symbol_info = symbol_info;
} else if (cursor_sp->GetEventType() == eTraceEventCPUChanged) {
// TODO: In case of a CPU change, we create a new root because we haven't
// investigated yet if a call tree can safely continue or if interrupts
// could have polluted the original call tree.
last_function_call = nullptr;
prev_symbol_info = {};
}
}
return roots;
}
void TraceDumper::DumpFunctionCalls() {
ThreadSP thread_sp = m_cursor_sp->GetExecutionContextRef().GetThreadSP();
ExecutionContext exe_ctx;
thread_sp->GetProcess()->GetTarget().CalculateExecutionContext(exe_ctx);
m_writer_up->FunctionCallForest(
CreateFunctionCallForest(m_cursor_sp, exe_ctx));
}