-
Notifications
You must be signed in to change notification settings - Fork 77
/
Copy pathrelated_projects.html
600 lines (566 loc) · 37.3 KB
/
related_projects.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="generator" content="Docutils 0.19: https://docutils.sourceforge.io/" />
<meta property="og:title" content="Related Projects" />
<meta property="og:type" content="website" />
<meta property="og:url" content="https://scikit-learn/stable/related_projects.html" />
<meta property="og:site_name" content="scikit-learn" />
<meta property="og:description" content="Projects implementing the scikit-learn estimator API are encouraged to use the scikit-learn-contrib template which facilitates best practices for testing and documenting estimators. The scikit-lear..." />
<meta property="og:image" content="https://scikit-learn.org/stable/_static/scikit-learn-logo-small.png" />
<meta property="og:image:alt" content="scikit-learn" />
<meta name="description" content="Projects implementing the scikit-learn estimator API are encouraged to use the scikit-learn-contrib template which facilitates best practices for testing and documenting estimators. The scikit-lear..." />
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Related Projects — scikit-learn 1.3.2 documentation</title>
<link rel="canonical" href="http://scikit-learn.org/stable/related_projects.html" />
<link rel="shortcut icon" href="_static/favicon.ico"/>
<link rel="stylesheet" href="_static/css/vendor/bootstrap.min.css" type="text/css" />
<link rel="stylesheet" href="_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="_static/copybutton.css" type="text/css" />
<link rel="stylesheet" href="_static/plot_directive.css" type="text/css" />
<link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Vibur" type="text/css" />
<link rel="stylesheet" href="_static/jupyterlite_sphinx.css" type="text/css" />
<link rel="stylesheet" href="_static/sg_gallery.css" type="text/css" />
<link rel="stylesheet" href="_static/sg_gallery-binder.css" type="text/css" />
<link rel="stylesheet" href="_static/sg_gallery-dataframe.css" type="text/css" />
<link rel="stylesheet" href="_static/sg_gallery-rendered-html.css" type="text/css" />
<link rel="stylesheet" href="_static/css/theme.css" type="text/css" />
<script id="documentation_options" data-url_root="./" src="_static/documentation_options.js"></script>
<script src="_static/js/vendor/jquery-3.6.3.slim.min.js"></script>
</head>
<body>
<nav id="navbar" class="sk-docs-navbar navbar navbar-expand-md navbar-light bg-light py-0">
<div class="container-fluid sk-docs-container px-0">
<a class="navbar-brand py-0" href="index.html">
<img
class="sk-brand-img"
src="_static/scikit-learn-logo-small.png"
alt="logo"/>
</a>
<button
id="sk-navbar-toggler"
class="navbar-toggler"
type="button"
data-toggle="collapse"
data-target="#navbarSupportedContent"
aria-controls="navbarSupportedContent"
aria-expanded="false"
aria-label="Toggle navigation"
>
<span class="navbar-toggler-icon"></span>
</button>
<div class="sk-navbar-collapse collapse navbar-collapse" id="navbarSupportedContent">
<ul class="navbar-nav mr-auto">
<li class="nav-item">
<a class="sk-nav-link nav-link" href="install.html">Install</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link" href="user_guide.html">User Guide</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link" href="modules/classes.html">API</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link" href="auto_examples/index.html">Examples</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link" target="_blank" rel="noopener noreferrer" href="https://blog.scikit-learn.org/">Community</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="getting_started.html" >Getting Started</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="tutorial/index.html" >Tutorial</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="whats_new/v1.3.html" >What's new</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="glossary.html" >Glossary</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="https://scikit-learn.org/dev/developers/index.html" target="_blank" rel="noopener noreferrer">Development</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="faq.html" >FAQ</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="support.html" >Support</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="#" >Related packages</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="roadmap.html" >Roadmap</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="governance.html" >Governance</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="about.html" >About us</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="https://github.com/scikit-learn/scikit-learn" >GitHub</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="https://scikit-learn.org/dev/versions.html" >Other Versions and Download</a>
</li>
<li class="nav-item dropdown nav-more-item-dropdown">
<a class="sk-nav-link nav-link dropdown-toggle" href="#" id="navbarDropdown" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">More</a>
<div class="dropdown-menu" aria-labelledby="navbarDropdown">
<a class="sk-nav-dropdown-item dropdown-item" href="getting_started.html" >Getting Started</a>
<a class="sk-nav-dropdown-item dropdown-item" href="tutorial/index.html" >Tutorial</a>
<a class="sk-nav-dropdown-item dropdown-item" href="whats_new/v1.3.html" >What's new</a>
<a class="sk-nav-dropdown-item dropdown-item" href="glossary.html" >Glossary</a>
<a class="sk-nav-dropdown-item dropdown-item" href="https://scikit-learn.org/dev/developers/index.html" target="_blank" rel="noopener noreferrer">Development</a>
<a class="sk-nav-dropdown-item dropdown-item" href="faq.html" >FAQ</a>
<a class="sk-nav-dropdown-item dropdown-item" href="support.html" >Support</a>
<a class="sk-nav-dropdown-item dropdown-item" href="#" >Related packages</a>
<a class="sk-nav-dropdown-item dropdown-item" href="roadmap.html" >Roadmap</a>
<a class="sk-nav-dropdown-item dropdown-item" href="governance.html" >Governance</a>
<a class="sk-nav-dropdown-item dropdown-item" href="about.html" >About us</a>
<a class="sk-nav-dropdown-item dropdown-item" href="https://github.com/scikit-learn/scikit-learn" >GitHub</a>
<a class="sk-nav-dropdown-item dropdown-item" href="https://scikit-learn.org/dev/versions.html" >Other Versions and Download</a>
</div>
</li>
</ul>
<div id="searchbox" role="search">
<div class="searchformwrapper">
<form class="search" action="search.html" method="get">
<input class="sk-search-text-input" type="text" name="q" aria-labelledby="searchlabel" />
<input class="sk-search-text-btn" type="submit" value="Go" />
</form>
</div>
</div>
</div>
</div>
</nav>
<div class="d-flex" id="sk-doc-wrapper">
<input type="checkbox" name="sk-toggle-checkbox" id="sk-toggle-checkbox">
<label id="sk-sidemenu-toggle" class="sk-btn-toggle-toc btn sk-btn-primary" for="sk-toggle-checkbox">Toggle Menu</label>
<div id="sk-sidebar-wrapper" class="border-right">
<div class="sk-sidebar-toc-wrapper">
<div class="btn-group w-100 mb-2" role="group" aria-label="rellinks">
<a href="support.html" role="button" class="btn sk-btn-rellink py-1" sk-rellink-tooltip="Support">Prev</a><a href="preface.html" role="button" class="btn sk-btn-rellink py-1" sk-rellink-tooltip="Welcome to scikit-learn">Up</a>
<a href="about.html" role="button" class="btn sk-btn-rellink py-1" sk-rellink-tooltip="About us">Next</a>
</div>
<div class="alert alert-danger p-1 mb-2" role="alert">
<p class="text-center mb-0">
<strong>scikit-learn 1.3.2</strong><br/>
<a href="http://scikit-learn.org/dev/versions.html">Other versions</a>
</p>
</div>
<div class="alert alert-warning p-1 mb-2" role="alert">
<p class="text-center mb-0">
Please <a class="font-weight-bold" href="about.html#citing-scikit-learn"><string>cite us</string></a> if you use the software.
</p>
</div>
<div class="sk-sidebar-toc">
<ul>
<li><a class="reference internal" href="#">Related Projects</a><ul>
<li><a class="reference internal" href="#interoperability-and-framework-enhancements">Interoperability and framework enhancements</a></li>
<li><a class="reference internal" href="#other-estimators-and-tasks">Other estimators and tasks</a></li>
<li><a class="reference internal" href="#statistical-learning-with-python">Statistical learning with Python</a><ul>
<li><a class="reference internal" href="#recommendation-engine-packages">Recommendation Engine packages</a></li>
<li><a class="reference internal" href="#domain-specific-packages">Domain specific packages</a></li>
</ul>
</li>
<li><a class="reference internal" href="#translations-of-scikit-learn-documentation">Translations of scikit-learn documentation</a></li>
</ul>
</li>
</ul>
</div>
</div>
</div>
<div id="sk-page-content-wrapper">
<div class="sk-page-content container-fluid body px-md-3" role="main">
<section id="related-projects">
<span id="id1"></span><h1>Related Projects<a class="headerlink" href="#related-projects" title="Permalink to this heading">¶</a></h1>
<p>Projects implementing the scikit-learn estimator API are encouraged to use
the <a class="reference external" href="https://github.com/scikit-learn-contrib/project-template">scikit-learn-contrib template</a>
which facilitates best practices for testing and documenting estimators.
The <a class="reference external" href="https://github.com/scikit-learn-contrib/scikit-learn-contrib">scikit-learn-contrib GitHub organization</a>
also accepts high-quality contributions of repositories conforming to this
template.</p>
<p>Below is a list of sister-projects, extensions and domain specific packages.</p>
<section id="interoperability-and-framework-enhancements">
<h2>Interoperability and framework enhancements<a class="headerlink" href="#interoperability-and-framework-enhancements" title="Permalink to this heading">¶</a></h2>
<p>These tools adapt scikit-learn for use with other technologies or otherwise
enhance the functionality of scikit-learn’s estimators.</p>
<p><strong>Data formats</strong></p>
<ul class="simple">
<li><p><a class="reference external" href="https://github.com/paulgb/sklearn-pandas/">sklearn_pandas</a> bridge for
scikit-learn pipelines and pandas data frame with dedicated transformers.</p></li>
<li><p><a class="reference external" href="https://github.com/phausamann/sklearn-xarray/">sklearn_xarray</a> provides
compatibility of scikit-learn estimators with xarray data structures.</p></li>
</ul>
<p><strong>Auto-ML</strong></p>
<ul class="simple">
<li><p><a class="reference external" href="https://github.com/automl/auto-sklearn/">auto-sklearn</a>
An automated machine learning toolkit and a drop-in replacement for a
scikit-learn estimator</p></li>
<li><p><a class="reference external" href="https://github.com/AutoViML/Auto_ViML/">autoviml</a>
Automatically Build Multiple Machine Learning Models with a Single Line of Code.
Designed as a faster way to use scikit-learn models without having to preprocess data.</p></li>
<li><p><a class="reference external" href="https://github.com/rhiever/tpot">TPOT</a>
An automated machine learning toolkit that optimizes a series of scikit-learn
operators to design a machine learning pipeline, including data and feature
preprocessors as well as the estimators. Works as a drop-in replacement for a
scikit-learn estimator.</p></li>
<li><p><a class="reference external" href="https://github.com/alteryx/featuretools">Featuretools</a>
A framework to perform automated feature engineering. It can be used for
transforming temporal and relational datasets into feature matrices for
machine learning.</p></li>
<li><p><a class="reference external" href="https://github.com/Neuraxio/Neuraxle">Neuraxle</a>
A library for building neat pipelines, providing the right abstractions to
both ease research, development, and deployment of machine learning
applications. Compatible with deep learning frameworks and scikit-learn API,
it can stream minibatches, use data checkpoints, build funky pipelines, and
serialize models with custom per-step savers.</p></li>
<li><p><a class="reference external" href="https://github.com/alteryx/evalml">EvalML</a>
EvalML is an AutoML library which builds, optimizes, and evaluates
machine learning pipelines using domain-specific objective functions.
It incorporates multiple modeling libraries under one API, and
the objects that EvalML creates use an sklearn-compatible API.</p></li>
</ul>
<p><strong>Experimentation and model registry frameworks</strong></p>
<ul class="simple">
<li><p><a class="reference external" href="https://mlflow.org/">MLFlow</a> MLflow is an open source platform to manage the ML
lifecycle, including experimentation, reproducibility, deployment, and a central
model registry.</p></li>
<li><p><a class="reference external" href="https://neptune.ai/">Neptune</a> Metadata store for MLOps,
built for teams that run a lot of experiments. It gives you a single
place to log, store, display, organize, compare, and query all your
model building metadata.</p></li>
<li><p><a class="reference external" href="https://github.com/IDSIA/Sacred">Sacred</a> Tool to help you configure,
organize, log and reproduce experiments</p></li>
<li><p><a class="reference external" href="https://skll.readthedocs.io/en/latest/index.html">Scikit-Learn Laboratory</a> A command-line
wrapper around scikit-learn that makes it easy to run machine learning
experiments with multiple learners and large feature sets.</p></li>
</ul>
<p><strong>Model inspection and visualization</strong></p>
<ul class="simple">
<li><p><a class="reference external" href="https://github.com/parrt/dtreeviz/">dtreeviz</a> A python library for
decision tree visualization and model interpretation.</p></li>
<li><p><a class="reference external" href="https://github.com/TeamHG-Memex/eli5/">eli5</a> A library for
debugging/inspecting machine learning models and explaining their
predictions.</p></li>
<li><p><a class="reference external" href="https://github.com/ploomber/sklearn-evaluation">sklearn-evaluation</a>
Machine learning model evaluation made easy: plots, tables, HTML reports,
experiment tracking and Jupyter notebook analysis. Visual analysis, model
selection, evaluation and diagnostics.</p></li>
<li><p><a class="reference external" href="https://github.com/DistrictDataLabs/yellowbrick">yellowbrick</a> A suite of
custom matplotlib visualizers for scikit-learn estimators to support visual feature
analysis, model selection, evaluation, and diagnostics.</p></li>
</ul>
<p><strong>Model selection</strong></p>
<ul class="simple">
<li><p><a class="reference external" href="https://scikit-optimize.github.io/">scikit-optimize</a>
A library to minimize (very) expensive and noisy black-box functions. It
implements several methods for sequential model-based optimization, and
includes a replacement for <code class="docutils literal notranslate"><span class="pre">GridSearchCV</span></code> or <code class="docutils literal notranslate"><span class="pre">RandomizedSearchCV</span></code> to do
cross-validated parameter search using any of these strategies.</p></li>
<li><p><a class="reference external" href="https://github.com/rsteca/sklearn-deap">sklearn-deap</a> Use evolutionary
algorithms instead of gridsearch in scikit-learn.</p></li>
</ul>
<p><strong>Model export for production</strong></p>
<ul class="simple">
<li><p><a class="reference external" href="https://github.com/onnx/sklearn-onnx">sklearn-onnx</a> Serialization of many
Scikit-learn pipelines to <a class="reference external" href="https://onnx.ai/">ONNX</a> for interchange and
prediction.</p></li>
<li><p><a class="reference external" href="https://skops.readthedocs.io/en/stable/persistence.html">skops.io</a> A
persistence model more secure than pickle, which can be used instead of
pickle in most common cases.</p></li>
<li><p><a class="reference external" href="https://github.com/jpmml/sklearn2pmml">sklearn2pmml</a>
Serialization of a wide variety of scikit-learn estimators and transformers
into PMML with the help of <a class="reference external" href="https://github.com/jpmml/jpmml-sklearn">JPMML-SkLearn</a>
library.</p></li>
<li><p><a class="reference external" href="https://github.com/nok/sklearn-porter">sklearn-porter</a>
Transpile trained scikit-learn models to C, Java, Javascript and others.</p></li>
<li><p><a class="reference external" href="https://github.com/BayesWitnesses/m2cgen">m2cgen</a>
A lightweight library which allows to transpile trained machine learning
models including many scikit-learn estimators into a native code of C, Java,
Go, R, PHP, Dart, Haskell, Rust and many other programming languages.</p></li>
<li><p><a class="reference external" href="https://treelite.readthedocs.io">treelite</a>
Compiles tree-based ensemble models into C code for minimizing prediction
latency.</p></li>
<li><p><a class="reference external" href="https://github.com/eloquentarduino/micromlgen">micromlgen</a>
MicroML brings Machine Learning algorithms to microcontrollers.
Supports several scikit-learn classifiers by transpiling them to C code.</p></li>
<li><p><a class="reference external" href="https://emlearn.org">emlearn</a>
Implements scikit-learn estimators in C99 for embedded devices and microcontrollers.
Supports several classifier, regression and outlier detection models.</p></li>
</ul>
<p><strong>Model throughput</strong></p>
<ul class="simple">
<li><p><a class="reference external" href="https://github.com/intel/scikit-learn-intelex">Intel(R) Extension for scikit-learn</a>
Mostly on high end Intel(R) hardware, accelerates some scikit-learn models
for both training and inference under certain circumstances. This project is
maintained by Intel(R) and scikit-learn’s maintainers are not involved in the
development of this project. Also note that in some cases using the tools and
estimators under <code class="docutils literal notranslate"><span class="pre">scikit-learn-intelex</span></code> would give different results than
<code class="docutils literal notranslate"><span class="pre">scikit-learn</span></code> itself. If you encounter issues while using this project,
make sure you report potential issues in their respective repositories.</p></li>
</ul>
</section>
<section id="other-estimators-and-tasks">
<h2>Other estimators and tasks<a class="headerlink" href="#other-estimators-and-tasks" title="Permalink to this heading">¶</a></h2>
<p>Not everything belongs or is mature enough for the central scikit-learn
project. The following are projects providing interfaces similar to
scikit-learn for additional learning algorithms, infrastructures
and tasks.</p>
<p><strong>Time series and forecasting</strong></p>
<ul class="simple">
<li><p><a class="reference external" href="https://unit8co.github.io/darts/">Darts</a> Darts is a Python library for
user-friendly forecasting and anomaly detection on time series. It contains a variety
of models, from classics such as ARIMA to deep neural networks. The forecasting
models can all be used in the same way, using fit() and predict() functions, similar
to scikit-learn.</p></li>
<li><p><a class="reference external" href="https://github.com/alan-turing-institute/sktime">sktime</a> A scikit-learn compatible
toolbox for machine learning with time series including time series
classification/regression and (supervised/panel) forecasting.</p></li>
<li><p><a class="reference external" href="https://github.com/JoaquinAmatRodrigo/skforecast">skforecast</a> A python library
that eases using scikit-learn regressors as multi-step forecasters. It also works
with any regressor compatible with the scikit-learn API.</p></li>
<li><p><a class="reference external" href="https://github.com/tslearn-team/tslearn">tslearn</a> A machine learning library for
time series that offers tools for pre-processing and feature extraction as well as
dedicated models for clustering, classification and regression.</p></li>
</ul>
<p><strong>Gradient (tree) boosting</strong></p>
<p>Note scikit-learn own modern gradient boosting estimators
<a class="reference internal" href="modules/generated/sklearn.ensemble.HistGradientBoostingClassifier.html#sklearn.ensemble.HistGradientBoostingClassifier" title="sklearn.ensemble.HistGradientBoostingClassifier"><code class="xref py py-class docutils literal notranslate"><span class="pre">HistGradientBoostingClassifier</span></code></a> and
<a class="reference internal" href="modules/generated/sklearn.ensemble.HistGradientBoostingRegressor.html#sklearn.ensemble.HistGradientBoostingRegressor" title="sklearn.ensemble.HistGradientBoostingRegressor"><code class="xref py py-class docutils literal notranslate"><span class="pre">HistGradientBoostingRegressor</span></code></a>.</p>
<ul class="simple">
<li><p><a class="reference external" href="https://github.com/dmlc/xgboost">XGBoost</a> XGBoost is an optimized distributed
gradient boosting library designed to be highly efficient, flexible and portable.</p></li>
<li><p><a class="reference external" href="https://lightgbm.readthedocs.io">LightGBM</a> LightGBM is a gradient boosting
framework that uses tree based learning algorithms. It is designed to be distributed
and efficient.</p></li>
</ul>
<p><strong>Structured learning</strong></p>
<ul class="simple">
<li><p><a class="reference external" href="https://github.com/hmmlearn/hmmlearn">HMMLearn</a> Implementation of hidden
markov models that was previously part of scikit-learn.</p></li>
<li><p><a class="reference external" href="https://pystruct.github.io">PyStruct</a> General conditional random fields
and structured prediction.</p></li>
<li><p><a class="reference external" href="https://github.com/jmschrei/pomegranate">pomegranate</a> Probabilistic modelling
for Python, with an emphasis on hidden Markov models.</p></li>
<li><p><a class="reference external" href="https://github.com/TeamHG-Memex/sklearn-crfsuite">sklearn-crfsuite</a>
Linear-chain conditional random fields
(<a class="reference external" href="http://www.chokkan.org/software/crfsuite/">CRFsuite</a> wrapper with
sklearn-like API).</p></li>
</ul>
<p><strong>Deep neural networks etc.</strong></p>
<ul class="simple">
<li><p><a class="reference external" href="https://github.com/dnouri/skorch">skorch</a> A scikit-learn compatible
neural network library that wraps PyTorch.</p></li>
<li><p><a class="reference external" href="https://github.com/adriangb/scikeras">scikeras</a> provides a wrapper around
Keras to interface it with scikit-learn. SciKeras is the successor
of <code class="docutils literal notranslate"><span class="pre">tf.keras.wrappers.scikit_learn</span></code>.</p></li>
</ul>
<p><strong>Federated Learning</strong></p>
<ul class="simple">
<li><p><a class="reference external" href="https://flower.dev/">Flower</a> A friendly federated learning framework with a
unified approach that can federate any workload, any ML framework, and any programming language.</p></li>
</ul>
<p><strong>Broad scope</strong></p>
<ul class="simple">
<li><p><a class="reference external" href="https://github.com/rasbt/mlxtend">mlxtend</a> Includes a number of additional
estimators as well as model visualization utilities.</p></li>
<li><p><a class="reference external" href="https://github.com/koaning/scikit-lego">scikit-lego</a> A number of scikit-learn compatible
custom transformers, models and metrics, focusing on solving practical industry tasks.</p></li>
</ul>
<p><strong>Other regression and classification</strong></p>
<ul class="simple">
<li><p><a class="reference external" href="https://mlens.readthedocs.io/">ML-Ensemble</a> Generalized
ensemble learning (stacking, blending, subsemble, deep ensembles,
etc.).</p></li>
<li><p><a class="reference external" href="https://github.com/scikit-learn-contrib/lightning">lightning</a> Fast
state-of-the-art linear model solvers (SDCA, AdaGrad, SVRG, SAG, etc…).</p></li>
<li><p><a class="reference external" href="https://github.com/scikit-learn-contrib/py-earth">py-earth</a> Multivariate
adaptive regression splines</p></li>
<li><p><a class="reference external" href="https://github.com/trevorstephens/gplearn">gplearn</a> Genetic Programming
for symbolic regression tasks.</p></li>
<li><p><a class="reference external" href="https://github.com/scikit-multilearn/scikit-multilearn">scikit-multilearn</a>
Multi-label classification with focus on label space manipulation.</p></li>
<li><p><a class="reference external" href="https://github.com/dmbee/seglearn">seglearn</a> Time series and sequence
learning using sliding window segmentation.</p></li>
<li><p><a class="reference external" href="https://github.com/ibayer/fastFM">fastFM</a> Fast factorization machine
implementation compatible with scikit-learn</p></li>
</ul>
<p><strong>Decomposition and clustering</strong></p>
<ul class="simple">
<li><p><a class="reference external" href="https://github.com/lda-project/lda/">lda</a>: Fast implementation of latent
Dirichlet allocation in Cython which uses <a class="reference external" href="https://en.wikipedia.org/wiki/Gibbs_sampling">Gibbs sampling</a> to sample from the true
posterior distribution. (scikit-learn’s
<a class="reference internal" href="modules/generated/sklearn.decomposition.LatentDirichletAllocation.html#sklearn.decomposition.LatentDirichletAllocation" title="sklearn.decomposition.LatentDirichletAllocation"><code class="xref py py-class docutils literal notranslate"><span class="pre">LatentDirichletAllocation</span></code></a> implementation uses
<a class="reference external" href="https://en.wikipedia.org/wiki/Variational_Bayesian_methods">variational inference</a> to sample from
a tractable approximation of a topic model’s posterior distribution.)</p></li>
<li><p><a class="reference external" href="https://github.com/nicodv/kmodes">kmodes</a> k-modes clustering algorithm for
categorical data, and several of its variations.</p></li>
<li><p><a class="reference external" href="https://github.com/scikit-learn-contrib/hdbscan">hdbscan</a> HDBSCAN and Robust Single
Linkage clustering algorithms for robust variable density clustering.
As of scikit-learn version 1.3.0, there is <a class="reference internal" href="modules/generated/sklearn.cluster.HDBSCAN.html#sklearn.cluster.HDBSCAN" title="sklearn.cluster.HDBSCAN"><code class="xref py py-class docutils literal notranslate"><span class="pre">HDBSCAN</span></code></a>.</p></li>
<li><p><a class="reference external" href="https://github.com/clara-labs/spherecluster">spherecluster</a> Spherical
K-means and mixture of von Mises Fisher clustering routines for data on the
unit hypersphere.</p></li>
</ul>
<p><strong>Pre-processing</strong></p>
<ul class="simple">
<li><p><a class="reference external" href="https://github.com/scikit-learn-contrib/categorical-encoding">categorical-encoding</a> A
library of sklearn compatible categorical variable encoders.
As of scikit-learn version 1.3.0, there is
<a class="reference internal" href="modules/generated/sklearn.preprocessing.TargetEncoder.html#sklearn.preprocessing.TargetEncoder" title="sklearn.preprocessing.TargetEncoder"><code class="xref py py-class docutils literal notranslate"><span class="pre">TargetEncoder</span></code></a>.</p></li>
<li><p><a class="reference external" href="https://github.com/scikit-learn-contrib/imbalanced-learn">imbalanced-learn</a> Various
methods to under- and over-sample datasets.</p></li>
<li><p><a class="reference external" href="https://github.com/solegalli/feature_engine">Feature-engine</a> A library
of sklearn compatible transformers for missing data imputation, categorical
encoding, variable transformation, discretization, outlier handling and more.
Feature-engine allows the application of preprocessing steps to selected groups
of variables and it is fully compatible with the Scikit-learn Pipeline.</p></li>
</ul>
<p><strong>Topological Data Analysis</strong></p>
<ul class="simple">
<li><p><a class="reference external" href="https://github.com/giotto-ai/giotto-tda">giotto-tda</a> A library for
<a class="reference external" href="https://en.wikipedia.org/wiki/Topological_data_analysis">Topological Data Analysis</a> aiming to
provide a scikit-learn compatible API. It offers tools to transform data
inputs (point clouds, graphs, time series, images) into forms suitable for
computations of topological summaries, and components dedicated to
extracting sets of scalar features of topological origin, which can be used
alongside other feature extraction methods in scikit-learn.</p></li>
</ul>
</section>
<section id="statistical-learning-with-python">
<h2>Statistical learning with Python<a class="headerlink" href="#statistical-learning-with-python" title="Permalink to this heading">¶</a></h2>
<p>Other packages useful for data analysis and machine learning.</p>
<ul class="simple">
<li><p><a class="reference external" href="https://pandas.pydata.org/">Pandas</a> Tools for working with heterogeneous and
columnar data, relational queries, time series and basic statistics.</p></li>
<li><p><a class="reference external" href="https://www.statsmodels.org">statsmodels</a> Estimating and analysing
statistical models. More focused on statistical tests and less on prediction
than scikit-learn.</p></li>
<li><p><a class="reference external" href="https://www.pymc.io/">PyMC</a> Bayesian statistical models and
fitting algorithms.</p></li>
<li><p><a class="reference external" href="https://stanford.edu/~mwaskom/software/seaborn/">Seaborn</a> Visualization library based on
matplotlib. It provides a high-level interface for drawing attractive statistical graphics.</p></li>
<li><p><a class="reference external" href="https://scikit-survival.readthedocs.io/">scikit-survival</a> A library implementing
models to learn from censored time-to-event data (also called survival analysis).
Models are fully compatible with scikit-learn.</p></li>
</ul>
<section id="recommendation-engine-packages">
<h3>Recommendation Engine packages<a class="headerlink" href="#recommendation-engine-packages" title="Permalink to this heading">¶</a></h3>
<ul class="simple">
<li><p><a class="reference external" href="https://github.com/benfred/implicit">implicit</a>, Library for implicit
feedback datasets.</p></li>
<li><p><a class="reference external" href="https://github.com/lyst/lightfm">lightfm</a> A Python/Cython
implementation of a hybrid recommender system.</p></li>
<li><p><a class="reference external" href="https://github.com/ylongqi/openrec">OpenRec</a> TensorFlow-based
neural-network inspired recommendation algorithms.</p></li>
<li><p><a class="reference external" href="https://surpriselib.com/">Surprise Lib</a> Library for explicit feedback
datasets.</p></li>
</ul>
</section>
<section id="domain-specific-packages">
<h3>Domain specific packages<a class="headerlink" href="#domain-specific-packages" title="Permalink to this heading">¶</a></h3>
<ul class="simple">
<li><p><a class="reference external" href="https://scikit-network.readthedocs.io/">scikit-network</a> Machine learning on graphs.</p></li>
<li><p><a class="reference external" href="https://scikit-image.org/">scikit-image</a> Image processing and computer
vision in python.</p></li>
<li><p><a class="reference external" href="https://www.nltk.org/">Natural language toolkit (nltk)</a> Natural language
processing and some machine learning.</p></li>
<li><p><a class="reference external" href="https://radimrehurek.com/gensim/">gensim</a> A library for topic modelling,
document indexing and similarity retrieval</p></li>
<li><p><a class="reference external" href="https://nilearn.github.io/">NiLearn</a> Machine learning for neuro-imaging.</p></li>
<li><p><a class="reference external" href="https://www.astroml.org/">AstroML</a> Machine learning for astronomy.</p></li>
</ul>
</section>
</section>
<section id="translations-of-scikit-learn-documentation">
<h2>Translations of scikit-learn documentation<a class="headerlink" href="#translations-of-scikit-learn-documentation" title="Permalink to this heading">¶</a></h2>
<p>Translation’s purpose is to ease reading and understanding in languages
other than English. Its aim is to help people who do not understand English
or have doubts about its interpretation. Additionally, some people prefer
to read documentation in their native language, but please bear in mind that
the only official documentation is the English one <a class="footnote-reference brackets" href="#f1" id="id2" role="doc-noteref"><span class="fn-bracket">[</span>1<span class="fn-bracket">]</span></a>.</p>
<p>Those translation efforts are community initiatives and we have no control
on them.
If you want to contribute or report an issue with the translation, please
contact the authors of the translation.
Some available translations are linked here to improve their dissemination
and promote community efforts.</p>
<ul class="simple">
<li><p><a class="reference external" href="https://sklearn.apachecn.org/">Chinese translation</a>
(<a class="reference external" href="https://github.com/apachecn/sklearn-doc-zh">source</a>)</p></li>
<li><p><a class="reference external" href="https://sklearn.ir/">Persian translation</a>
(<a class="reference external" href="https://github.com/mehrdad-dev/scikit-learn">source</a>)</p></li>
<li><p><a class="reference external" href="https://qu4nt.github.io/sklearn-doc-es/">Spanish translation</a>
(<a class="reference external" href="https://github.com/qu4nt/sklearn-doc-es">source</a>)</p></li>
<li><p><a class="reference external" href="https://panda5176.github.io/scikit-learn-korean/">Korean translation</a>
(<a class="reference external" href="https://github.com/panda5176/scikit-learn-korean">source</a>)</p></li>
</ul>
<p class="rubric">Footnotes</p>
<aside class="footnote-list brackets">
<aside class="footnote brackets" id="f1" role="note">
<span class="label"><span class="fn-bracket">[</span><a role="doc-backlink" href="#id2">1</a><span class="fn-bracket">]</span></span>
<p>following <a class="reference external" href="https://www.kernel.org/doc/html/latest/translations/index.html#disclaimer">linux documentation Disclaimer</a></p>
</aside>
</aside>
</section>
</section>
</div>
<div class="container">
<footer class="sk-content-footer">
© 2007 - 2023, scikit-learn developers (BSD License).
<a href="_sources/related_projects.rst.txt" rel="nofollow">Show this page source</a>
</footer>
</div>
</div>
</div>
<script src="_static/js/vendor/bootstrap.min.js"></script>
<script>
window.ga=window.ga||function(){(ga.q=ga.q||[]).push(arguments)};ga.l=+new Date;
ga('create', 'UA-22606712-2', 'auto');
ga('set', 'anonymizeIp', true);
ga('send', 'pageview');
</script>
<script async src='https://www.google-analytics.com/analytics.js'></script>
<script defer data-domain="scikit-learn.org" src="https://views.scientific-python.org/js/script.js">
</script>
<script src="_static/clipboard.min.js"></script>
<script src="_static/copybutton.js"></script>
<script>
$(document).ready(function() {
/* Add a [>>>] button on the top-right corner of code samples to hide
* the >>> and ... prompts and the output and thus make the code
* copyable. */
var div = $('.highlight-python .highlight,' +
'.highlight-python3 .highlight,' +
'.highlight-pycon .highlight,' +
'.highlight-default .highlight')
var pre = div.find('pre');
// get the styles from the current theme
pre.parent().parent().css('position', 'relative');
// create and add the button to all the code blocks that contain >>>
div.each(function(index) {
var jthis = $(this);
// tracebacks (.gt) contain bare text elements that need to be
// wrapped in a span to work with .nextUntil() (see later)
jthis.find('pre:has(.gt)').contents().filter(function() {
return ((this.nodeType == 3) && (this.data.trim().length > 0));
}).wrap('<span>');
});
/*** Add permalink buttons next to glossary terms ***/
$('dl.glossary > dt[id]').append(function() {
return ('<a class="headerlink" href="#' +
this.getAttribute('id') +
'" title="Permalink to this term">¶</a>');
});
});
</script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml.js"></script>
<script src="https://scikit-learn.org/versionwarning.js"></script>
</body>
</html>