Skip to content

A series of Jupyter notebooks that walk you through the fundamentals of Machine Learning and Deep Learning in python using Scikit-Learn and TensorFlow.

License

Notifications You must be signed in to change notification settings

scitao/handson-ml

Repository files navigation

Machine Learning Notebooks

This project aims at teaching you the fundamentals of Machine Learning in python.

Simply open the Jupyter notebooks you are interested in:

  • using Binder: Binder
    • this let's you experiment with the code examples
  • or directly within github (start at index.ipynb)
  • or by cloning this repository and running Jupyter locally.
    • if you prefer this option, follow the installation instructions below.

Installation

Obviously, you will need git and python (2 or 3).

First, clone this repository:

$ cd {your development directory}
$ git clone https://github.com/ageron/ml-notebooks.git
$ cd ml-notebooks

If you want an isolated environment, you can use virtualenv:

$ virtualenv env
$ source ./env/bin/activate

Next, edit requirements.txt to uncomment the right version of TensorFlow for your platform, then install the required python packages using pip:

$ pip install -r requirements.txt

Finally, launch Jupyter:

$ jupyter notebook

This should start the Jupyter server locally, and open your browser. Click on index.ipynb to get started.

About

A series of Jupyter notebooks that walk you through the fundamentals of Machine Learning and Deep Learning in python using Scikit-Learn and TensorFlow.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 100.0%