-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmpfitellipse.pro
354 lines (328 loc) · 12.9 KB
/
mpfitellipse.pro
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
;+
; NAME:
; MPFITELLIPSE
;
; AUTHOR:
; Craig B. Markwardt, NASA/GSFC Code 662, Greenbelt, MD 20770
; UPDATED VERSIONs can be found on my WEB PAGE:
; http://cow.physics.wisc.edu/~craigm/idl/idl.html
;
; PURPOSE:
; Approximate fit to points forming an ellipse
;
; MAJOR TOPICS:
; Curve and Surface Fitting
;
; CALLING SEQUENCE:
; parms = MPFITELLIPSE(X, Y, start_parms, [/TILT, WEIGHTS=wts, ...])
;
; DESCRIPTION:
;
; MPFITELLIPSE fits a closed elliptical or circular curve to a two
; dimensional set of data points. The user specifies the X and Y
; positions of the points, and an optional set of weights. The
; ellipse may also be tilted at an arbitrary angle.
;
; IMPORTANT NOTE: this fitting program performs simple ellipse
; fitting. It will not work well for ellipse data with high
; eccentricity. More robust answers can usually be obtained with
; "orthogonal distance regression." (See FORTRAN package ODRPACK on
; netlib.org for more information).
;
; The best fitting ellipse parameters are returned from by
; MPFITELLIPSE as a vector, whose values are:
;
; P[0] Ellipse semi axis 1
; P[1] Ellipse semi axis 2 ( = P[0] if CIRCLE keyword set)
; P[2] Ellipse center - x value
; P[3] Ellipse center - y value
; P[4] Ellipse rotation angle (radians) if TILT keyword set
;
; If the TILT keyword is set, then the P[0] is meant to be the
; semi-major axis, and P[1] is the semi-minor axis, and P[4]
; represents the tilt of the semi-major axis with respect to the X
; axis. If the TILT keyword is not set, the P[0] and P[1] represent
; the ellipse semi-axes in the X and Y directions, respectively.
; The returned semi-axis lengths should always be positive.
;
; The user may specify an initial set of trial parameters, but by
; default MPFITELLIPSE will estimate the parameters automatically.
;
; Users should be aware that in the presence of large amounts of
; noise, namely when the measurement error becomes significant
; compared to the ellipse axis length, then the estimated parameters
; become unreliable. Generally speaking the computed axes will
; overestimate the true axes. For example when (SIGMA_R/R) becomes
; 0.5, the radius of the ellipse is overestimated by about 40%.
;
; This unreliability is also pronounced if the ellipse has high
; eccentricity, as noted above.
;
; Users can weight their data as they see appropriate. However, the
; following prescription for the weighting may serve as a good
; starting point, and appeared to produce results comparable to the
; typical chi-squared value.
;
; WEIGHTS = 0.75/(SIGMA_X^2 + SIGMA_Y^2)
;
; where SIGMA_X and SIGMA_Y are the measurement error vectors in the
; X and Y directions respectively. However, this has not been
; robustly tested, and it should be pointed out that this weighting
; may only be appropriate for a set of points whose measurement
; errors are comparable. If a more robust estimation of the
; parameter values is needed, the so-called orthogonal distance
; regression package should be used (ODRPACK, available in FORTRAN
; at www.netlib.org).
;
; INPUTS:
;
; X - measured X positions of the points in the ellipse.
; Y - measured Y positions of the points in the ellipse.
;
; START_PARAMS - an array of starting values for the ellipse
; parameters, as described above. This parameter is
; optional; if not specified by the user, then the
; ellipse parameters are estimated automatically from
; the properties of the data.
;
; RETURNS:
;
; Returns the best fitting model ellipse parameters. Returned
; values are undefined if STATUS indicates an error condition.
;
; KEYWORDS:
;
; ** NOTE ** Additional keywords such as PARINFO, BESTNORM, and
; STATUS are accepted by MPFITELLIPSE but not documented
; here. Please see the documentation for MPFIT for the
; description of these advanced options.
;
; CIRCULAR - if set, then the curve is assumed to be a circle
; instead of ellipse. When set, the parameters P[0] and
; P[1] will be identical and the TILT keyword will have
; no effect.
;
; PERROR - upon return, the 1-sigma uncertainties of the returned
; ellipse parameter values. These values are only
; meaningful if the WEIGHTS keyword is specified properly.
;
; If the fit is unweighted (i.e. no errors were given, or
; the weights were uniformly set to unity), then PERROR
; will probably not represent the true parameter
; uncertainties.
;
; If STATUS indicates an error condition, then PERROR is
; undefined.
;
; QUIET - if set then diagnostic fitting messages are suppressed.
; Default: QUIET=1 (i.e., no diagnostics]
;
; STATUS - an integer status code is returned. All values greater
; than zero can represent success (however STATUS EQ 5 may
; indicate failure to converge). Please see MPFIT for
; the definitions of status codes.
;
; TILT - if set, then the major and minor axes of the ellipse
; are allowed to rotate with respect to the data axes.
; Parameter P[4] will be set to the clockwise rotation angle
; of the P[0] axis in radians, as measured from the +X axis.
; P[4] should be in the range 0 to !dpi.
;
; WEIGHTS - Array of weights to be used in calculating the
; chi-squared value. The chi-squared value is computed
; as follows:
;
; CHISQ = TOTAL( (Z-MYFUNCT(X,Y,P))^2 * ABS(WEIGHTS)^2 )
;
; Users may wish to follow the guidelines for WEIGHTS
; described above.
;
;
; EXAMPLE:
;
; ; Construct a set of points on an ellipse, with some noise
; ph0 = 2*!pi*randomu(seed,50)
; x = 50. + 32.*cos(ph0) + 4.0*randomn(seed, 50)
; y = -75. + 65.*sin(ph0) + 0.1*randomn(seed, 50)
;
; ; Compute weights function
; weights = 0.75/(4.0^2 + 0.1^2)
;
; ; Fit ellipse and plot result
; p = mpfitellipse(x, y)
; phi = dindgen(101)*2D*!dpi/100
; plot, x, y, psym=1
; oplot, p[2]+p[0]*cos(phi), p[3]+p[1]*sin(phi), color='ff'xl
;
; ; Fit ellipse and plot result - WITH TILT
; p = mpfitellipse(x, y, /tilt)
; phi = dindgen(101)*2D*!dpi/100
; ; New parameter P[4] gives tilt of ellipse w.r.t. coordinate axes
; ; We must rotate a standard ellipse to this new orientation
; xm = p[2] + p[0]*cos(phi)*cos(p[4]) + p[1]*sin(phi)*sin(p[4])
; ym = p[3] - p[0]*cos(phi)*sin(p[4]) + p[1]*sin(phi)*cos(p[4])
;
; plot, x, y, psym=1
; oplot, xm, ym, color='ff'xl
;
; REFERENCES:
;
; MINPACK-1, Jorge More', available from netlib (www.netlib.org).
; "Optimization Software Guide," Jorge More' and Stephen Wright,
; SIAM, *Frontiers in Applied Mathematics*, Number 14.
;
; MODIFICATION HISTORY:
;
; Ported from MPFIT2DPEAK, 17 Dec 2000, CM
; More documentation, 11 Jan 2001, CM
; Example corrected, 18 Nov 2001, CM
; Change CIRCLE keyword to the correct CIRCULAR keyword, 13 Sep
; 2002, CM
; Add error messages for SYMMETRIC and CIRCLE, 08 Nov 2002, CM
; Found small error in computation of _EVAL (when CIRCULAR) was set;
; sanity check when CIRCULAR is set, 21 Jan 2003, CM
; Convert to IDL 5 array syntax (!), 16 Jul 2006, CM
; Move STRICTARR compile option inside each function/procedure, 9
; Oct 2006
; Add disclaimer about the suitability of this program for fitting
; ellipses, 17 Sep 2007, CM
; Clarify documentation of TILT angle; make sure output contains
; semi-major axis first, followed by semi-minor; make sure that
; semi-axes are always positive (and can handle negative inputs)
; 17 Sep 2007, CM
; Output tilt angle is now in range 0 to !DPI, 20 Sep 2007, CM
; Some documentation clarifications, including to remove reference
; to the "ERR" keyword, which does not exist, 17 Jan 2008, CM
; Swapping of P[0] and P[1] only occurs if /TILT is set, 06 Nov
; 2009, CM
; Document an example of how to plot a tilted ellipse, 09 Nov 2009, CM
; Check for MPFIT error conditions and return immediately, 23 Jan 2010, CM
;
; $Id: mpfitellipse.pro,v 1.14 2010/01/25 03:38:03 craigm Exp $
;-
; Copyright (C) 1997-2000,2002,2003,2007,2008,2009,2010 Craig Markwardt
; This software is provided as is without any warranty whatsoever.
; Permission to use, copy, modify, and distribute modified or
; unmodified copies is granted, provided this copyright and disclaimer
; are included unchanged.
;-
FORWARD_FUNCTION mpfitellipse_u, mpfitellipse_eval, mpfitellipse, mpfit
; Compute the "u" value = (x/a)^2 + (y/b)^2 with optional rotation
function mpfitellipse_u, x, y, p, tilt=tilt, circle=circle
COMPILE_OPT strictarr
widx = abs(p[0]) > 1e-20 & widy = abs(p[1]) > 1e-20
if keyword_set(circle) then widy = widx
xp = x-p[2] & yp = y-p[3]
theta = p[4]
if keyword_set(tilt) AND theta NE 0 then begin
c = cos(theta) & s = sin(theta)
return, ( (xp * (c/widx) - yp * (s/widx))^2 + $
(xp * (s/widy) + yp * (c/widy))^2 )
endif else begin
return, (xp/widx)^2 + (yp/widy)^2
endelse
end
; This is the call-back function for MPFIT. It evaluates the
; function, subtracts the data, and returns the residuals.
function mpfitellipse_eval, p, tilt=tilt, circle=circle, _EXTRA=extra
COMPILE_OPT strictarr
common mpfitellipse_common, xy, wc
tilt = keyword_set(tilt)
circle = keyword_set(circle)
u2 = mpfitellipse_u(xy[*,0], xy[*,1], p, tilt=tilt, circle=circle) - 1.
if n_elements(wc) GT 0 then begin
if circle then u2 = sqrt(abs(p[0]*p[0]*wc))*u2 $
else u2 = sqrt(abs(p[0]*p[1]*wc))*u2
endif
return, u2
end
function mpfitellipse, x, y, p0, WEIGHTS=wts, $
BESTNORM=bestnorm, nfev=nfev, STATUS=status, $
tilt=tilt, circular=circle, $
circle=badcircle1, symmetric=badcircle2, $
parinfo=parinfo, query=query, $
covar=covar, perror=perror, niter=iter, $
quiet=quiet, ERRMSG=errmsg, _EXTRA=extra
COMPILE_OPT strictarr
status = 0L
errmsg = ''
;; Detect MPFIT and crash if it was not found
catch, catcherror
if catcherror NE 0 then begin
MPFIT_NOTFOUND:
catch, /cancel
message, 'ERROR: the required function MPFIT must be in your IDL path', /info
return, !values.d_nan
endif
if mpfit(/query) NE 1 then goto, MPFIT_NOTFOUND
catch, /cancel
if keyword_set(query) then return, 1
if n_params() EQ 0 then begin
message, "USAGE: PARMS = MPFITELLIPSE(X, Y, START_PARAMS, ... )", $
/info
return, !values.d_nan
endif
nx = n_elements(x) & ny = n_elements(y)
if (nx EQ 0) OR (ny EQ 0) OR (nx NE ny) then begin
message, 'ERROR: X and Y must have the same number of elements', /info
return, !values.d_nan
endif
if keyword_set(badcircle1) OR keyword_set(badcircle2) then $
message, 'ERROR: do not use the CIRCLE or SYMMETRIC keywords. ' +$
'Use CIRCULAR instead.'
p = make_array(5, value=x[0]*0)
if n_elements(p0) GT 0 then begin
p[0] = p0
if keyword_set(circle) then p[1] = p[0]
endif else begin
mx = moment(x)
my = moment(y)
p[0] = [sqrt(mx[1]), sqrt(my[1]), mx[0], my[0], 0]
if keyword_set(circle) then $
p[0:1] = sqrt(mx[1]+my[1])
endelse
common mpfitellipse_common, xy, wc
if n_elements(wts) GT 0 then begin
wc = abs(wts)
endif else begin
wc = 0 & dummy = temporary(wc)
endelse
xy = [[x],[y]]
nfev = 0L & dummy = temporary(nfev)
covar = 0 & dummy = temporary(covar)
perror = 0 & dummy = temporary(perror)
status = 0
result = mpfit('mpfitellipse_eval', p, $
parinfo=parinfo, STATUS=status, nfev=nfev, BESTNORM=bestnorm,$
covar=covar, perror=perror, niter=iter, $
functargs={circle:keyword_set(circle), tilt:keyword_set(tilt)},$
ERRMSG=errmsg, quiet=quiet, _EXTRA=extra)
;; Print error message if there is one.
if NOT keyword_set(quiet) AND errmsg NE '' then $
message, errmsg, /info
;; Return if there is an error condition
if status LE 0 then return, result
;; Sanity check on resulting parameters
if keyword_set(circle) then begin
result[1] = result[0]
perror[1] = perror[0]
endif
if NOT keyword_set(tilt) then begin
result[4] = 0
perror[4] = 0
endif
;; Make sure the axis lengths are positive, and the semi-major axis
;; is listed first
result[0:1] = abs(result[0:1])
if abs(result[0]) LT abs(result[1]) AND keyword_set(tilt) then begin
tmp = result[0] & result[0] = result[1] & result[1] = tmp
tmp = perror[0] & perror[0] = perror[1] & perror[1] = tmp
result[4] = result[4] - !dpi/2d
endif
if keyword_set(tilt) then begin
;; Put tilt in the range 0 to +Pi
result[4] = result[4] - !dpi * floor(result[4]/!dpi)
endif
return, result
end