forked from pymc-devs/pymc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dgebal.f
322 lines (322 loc) · 8.46 KB
/
dgebal.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
SUBROUTINE DGEBAL( JOB, N, A, LDA, ILO, IHI, SCALE, INFO )
*
* -- LAPACK routine (version 3.1) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
CHARACTER JOB
INTEGER IHI, ILO, INFO, LDA, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), SCALE( * )
* ..
*
* Purpose
* =======
*
* DGEBAL balances a general real matrix A. This involves, first,
* permuting A by a similarity transformation to isolate eigenvalues
* in the first 1 to ILO-1 and last IHI+1 to N elements on the
* diagonal; and second, applying a diagonal similarity transformation
* to rows and columns ILO to IHI to make the rows and columns as
* close in norm as possible. Both steps are optional.
*
* Balancing may reduce the 1-norm of the matrix, and improve the
* accuracy of the computed eigenvalues and/or eigenvectors.
*
* Arguments
* =========
*
* JOB (input) CHARACTER*1
* Specifies the operations to be performed on A:
* = 'N': none: simply set ILO = 1, IHI = N, SCALE(I) = 1.0
* for i = 1,...,N;
* = 'P': permute only;
* = 'S': scale only;
* = 'B': both permute and scale.
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
* On entry, the input matrix A.
* On exit, A is overwritten by the balanced matrix.
* If JOB = 'N', A is not referenced.
* See Further Details.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,N).
*
* ILO (output) INTEGER
* IHI (output) INTEGER
* ILO and IHI are set to integers such that on exit
* A(i,j) = 0 if i > j and j = 1,...,ILO-1 or I = IHI+1,...,N.
* If JOB = 'N' or 'S', ILO = 1 and IHI = N.
*
* SCALE (output) DOUBLE PRECISION array, dimension (N)
* Details of the permutations and scaling factors applied to
* A. If P(j) is the index of the row and column interchanged
* with row and column j and D(j) is the scaling factor
* applied to row and column j, then
* SCALE(j) = P(j) for j = 1,...,ILO-1
* = D(j) for j = ILO,...,IHI
* = P(j) for j = IHI+1,...,N.
* The order in which the interchanges are made is N to IHI+1,
* then 1 to ILO-1.
*
* INFO (output) INTEGER
* = 0: successful exit.
* < 0: if INFO = -i, the i-th argument had an illegal value.
*
* Further Details
* ===============
*
* The permutations consist of row and column interchanges which put
* the matrix in the form
*
* ( T1 X Y )
* P A P = ( 0 B Z )
* ( 0 0 T2 )
*
* where T1 and T2 are upper triangular matrices whose eigenvalues lie
* along the diagonal. The column indices ILO and IHI mark the starting
* and ending columns of the submatrix B. Balancing consists of applying
* a diagonal similarity transformation inv(D) * B * D to make the
* 1-norms of each row of B and its corresponding column nearly equal.
* The output matrix is
*
* ( T1 X*D Y )
* ( 0 inv(D)*B*D inv(D)*Z ).
* ( 0 0 T2 )
*
* Information about the permutations P and the diagonal matrix D is
* returned in the vector SCALE.
*
* This subroutine is based on the EISPACK routine BALANC.
*
* Modified by Tzu-Yi Chen, Computer Science Division, University of
* California at Berkeley, USA
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
DOUBLE PRECISION SCLFAC
PARAMETER ( SCLFAC = 2.0D+0 )
DOUBLE PRECISION FACTOR
PARAMETER ( FACTOR = 0.95D+0 )
* ..
* .. Local Scalars ..
LOGICAL NOCONV
INTEGER I, ICA, IEXC, IRA, J, K, L, M
DOUBLE PRECISION C, CA, F, G, R, RA, S, SFMAX1, SFMAX2, SFMIN1,
$ SFMIN2
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER IDAMAX
DOUBLE PRECISION DLAMCH
EXTERNAL LSAME, IDAMAX, DLAMCH
* ..
* .. External Subroutines ..
EXTERNAL DSCAL, DSWAP, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN
* ..
* .. Executable Statements ..
*
* Test the input parameters
*
INFO = 0
IF( .NOT.LSAME( JOB, 'N' ) .AND. .NOT.LSAME( JOB, 'P' ) .AND.
$ .NOT.LSAME( JOB, 'S' ) .AND. .NOT.LSAME( JOB, 'B' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -4
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DGEBAL', -INFO )
RETURN
END IF
*
K = 1
L = N
*
IF( N.EQ.0 )
$ GO TO 210
*
IF( LSAME( JOB, 'N' ) ) THEN
DO 10 I = 1, N
SCALE( I ) = ONE
10 CONTINUE
GO TO 210
END IF
*
IF( LSAME( JOB, 'S' ) )
$ GO TO 120
*
* Permutation to isolate eigenvalues if possible
*
GO TO 50
*
* Row and column exchange.
*
20 CONTINUE
SCALE( M ) = J
IF( J.EQ.M )
$ GO TO 30
*
CALL DSWAP( L, A( 1, J ), 1, A( 1, M ), 1 )
CALL DSWAP( N-K+1, A( J, K ), LDA, A( M, K ), LDA )
*
30 CONTINUE
GO TO ( 40, 80 )IEXC
*
* Search for rows isolating an eigenvalue and push them down.
*
40 CONTINUE
IF( L.EQ.1 )
$ GO TO 210
L = L - 1
*
50 CONTINUE
DO 70 J = L, 1, -1
*
DO 60 I = 1, L
IF( I.EQ.J )
$ GO TO 60
IF( A( J, I ).NE.ZERO )
$ GO TO 70
60 CONTINUE
*
M = L
IEXC = 1
GO TO 20
70 CONTINUE
*
GO TO 90
*
* Search for columns isolating an eigenvalue and push them left.
*
80 CONTINUE
K = K + 1
*
90 CONTINUE
DO 110 J = K, L
*
DO 100 I = K, L
IF( I.EQ.J )
$ GO TO 100
IF( A( I, J ).NE.ZERO )
$ GO TO 110
100 CONTINUE
*
M = K
IEXC = 2
GO TO 20
110 CONTINUE
*
120 CONTINUE
DO 130 I = K, L
SCALE( I ) = ONE
130 CONTINUE
*
IF( LSAME( JOB, 'P' ) )
$ GO TO 210
*
* Balance the submatrix in rows K to L.
*
* Iterative loop for norm reduction
*
SFMIN1 = DLAMCH( 'S' ) / DLAMCH( 'P' )
SFMAX1 = ONE / SFMIN1
SFMIN2 = SFMIN1*SCLFAC
SFMAX2 = ONE / SFMIN2
140 CONTINUE
NOCONV = .FALSE.
*
DO 200 I = K, L
C = ZERO
R = ZERO
*
DO 150 J = K, L
IF( J.EQ.I )
$ GO TO 150
C = C + ABS( A( J, I ) )
R = R + ABS( A( I, J ) )
150 CONTINUE
ICA = IDAMAX( L, A( 1, I ), 1 )
CA = ABS( A( ICA, I ) )
IRA = IDAMAX( N-K+1, A( I, K ), LDA )
RA = ABS( A( I, IRA+K-1 ) )
*
* Guard against zero C or R due to underflow.
*
IF( C.EQ.ZERO .OR. R.EQ.ZERO )
$ GO TO 200
G = R / SCLFAC
F = ONE
S = C + R
160 CONTINUE
IF( C.GE.G .OR. MAX( F, C, CA ).GE.SFMAX2 .OR.
$ MIN( R, G, RA ).LE.SFMIN2 )GO TO 170
F = F*SCLFAC
C = C*SCLFAC
CA = CA*SCLFAC
R = R / SCLFAC
G = G / SCLFAC
RA = RA / SCLFAC
GO TO 160
*
170 CONTINUE
G = C / SCLFAC
180 CONTINUE
IF( G.LT.R .OR. MAX( R, RA ).GE.SFMAX2 .OR.
$ MIN( F, C, G, CA ).LE.SFMIN2 )GO TO 190
F = F / SCLFAC
C = C / SCLFAC
G = G / SCLFAC
CA = CA / SCLFAC
R = R*SCLFAC
RA = RA*SCLFAC
GO TO 180
*
* Now balance.
*
190 CONTINUE
IF( ( C+R ).GE.FACTOR*S )
$ GO TO 200
IF( F.LT.ONE .AND. SCALE( I ).LT.ONE ) THEN
IF( F*SCALE( I ).LE.SFMIN1 )
$ GO TO 200
END IF
IF( F.GT.ONE .AND. SCALE( I ).GT.ONE ) THEN
IF( SCALE( I ).GE.SFMAX1 / F )
$ GO TO 200
END IF
G = ONE / F
SCALE( I ) = SCALE( I )*F
NOCONV = .TRUE.
*
CALL DSCAL( N-K+1, G, A( I, K ), LDA )
CALL DSCAL( L, F, A( 1, I ), 1 )
*
200 CONTINUE
*
IF( NOCONV )
$ GO TO 140
*
210 CONTINUE
ILO = K
IHI = L
*
RETURN
*
* End of DGEBAL
*
END