forked from dmlc/nnvm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathop_common.h
331 lines (303 loc) · 10.9 KB
/
op_common.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
/*!
* Copyright (c) 2017 by Contributors
* \file op_common.h
* \brief Common operator utilities
*/
#ifndef NNVM_TOP_OP_COMMON_H_
#define NNVM_TOP_OP_COMMON_H_
#include <dmlc/logging.h>
#include <dmlc/parameter.h>
#include <nnvm/top/tensor.h>
#include <string>
#include <vector>
#include <unordered_set>
namespace nnvm {
namespace top {
/*!
* \brief Parse keyword arguments as PType arguments and save to parsed
* \tparam PType the parameter type.
* \param attrs The attributes.
*/
template<typename PType>
inline void ParamParser(nnvm::NodeAttrs* attrs) {
PType param;
try {
param.Init(attrs->dict);
} catch (const dmlc::ParamError& e) {
std::ostringstream os;
os << e.what();
os << ", in operator " << attrs->op->name << "("
<< "name=\"" << attrs->name << "\"";
for (const auto& k : attrs->dict) {
os << ", " << k.first << "=\"" << k.second << "\"";
}
os << ")";
throw dmlc::ParamError(os.str());
}
attrs->parsed = std::move(param);
}
/*!
* \brief Parse keyword arguments as PType arguments and save to parsed
* \tparam PType the arameter type.
* \param attrs The attributes.
*/
template<typename PType>
inline std::unordered_map<std::string, std::string>
ParamGetAttrDict(const nnvm::NodeAttrs& attrs) {
std::unordered_map<std::string, std::string> dict = attrs.dict;
nnvm::get<PType>(attrs.parsed).UpdateDict(&dict);
return dict;
}
/*! \brief check if shape is empty or contains unkown (0) dim. */
inline bool shape_is_none(const TShape& x) {
return x.ndim() == 0 || x.Size() == 0;
}
/*! \brief check if type is none (-1) */
inline bool type_is_none(const int& x) {
return x == -1;
}
/*! \brief check if shape is scalar({1}). */
inline bool shape_is_scalar(const TShape& x) {
return x.ndim() == 1 && x.Size() == 1;
}
/*! \brief get string representation of shape */
inline std::string shape_string(const TShape& x) {
std::ostringstream os;
os << x;
return os.str();
}
/*! \brief get string representation of shape */
inline std::string type_string(const int& x) {
return std::to_string(x);
}
/*!
* \brief Assign x to y. Checks for compatiblity when y is not empty.
* Allow missing dim in both x and y (as 0).
* \param y target shape.
* \param x source shape.
* \return whether x and y are compatible.
*/
inline bool shape_assign(TShape *y, const TShape& x) {
if (y->ndim() == 0) {
*y = x;
return true;
} else if (y->ndim() != x.ndim()) {
return x.ndim() == 0;
} else {
for (size_t i = 0; i < y->ndim(); ++i) {
if ((*y)[i] == 0) {
(*y)[i] = x[i];
} else if ((*y)[i] != x[i] && x[i] != 0) {
return false;
}
}
return true;
}
}
/*!
* \brief Assign x to y. Checks for compatiblity when y is not -1.
* \param y target type.
* \param x source type.
* \return whether x and y are compatible.
*/
inline bool type_assign(int *y, const int& x) {
if (*y == -1) {
*y = x;
return true;
} else if (*y != x && x != -1) {
return false;
}
return true;
}
template<typename AttrType>
inline std::string attr_assign_error_msg(const NodeAttrs& attrs,
int index, bool is_input,
const AttrType& expected,
const AttrType& actual,
const char* attr_name) {
static const auto& flist_inputs = Op::GetAttr<FListInputNames>("FListInputNames");
static const auto& flist_outputs = Op::GetAttr<FListOutputNames>("FListOutputNames");
const auto& flist = is_input ? flist_inputs : flist_outputs;
std::string name;
if (flist.count(attrs.op)) {
name = flist[attrs.op](attrs)[index];
} else {
name = (is_input ? "data" : "output") + std::to_string(index);
}
std::ostringstream msg;
msg << "Operator " << attrs.op->name << "(";
for (const auto& kv : attrs.dict) msg << kv.first << "=" << kv.second << ", ";
msg << "name=" << attrs.name << ") expects " << name << "\'s " << attr_name
<< " to be " << expected << ", but got " << actual << ".";
return msg.str();
}
/*!
* \brief macro assign shape to input if out is unknown otherwise check consistency
* Use macro so we can see the error file more clearly
* \param inputs the shape array to store the result
* \param index the index of in the array
* \param shape the inferred shape
*/
#define NNVM_ASSIGN_INPUT_SHAPE(attrs, inputs, index, shape) \
{ \
if (!shape_assign(&(inputs)[index], TShape(shape))) { \
LOG(FATAL) << attr_assign_error_msg(attrs, index, true, shape, \
(inputs)[index], "shape"); \
} \
}
/*!
* \brief macro assign shape to out if out is unknown otherwise check consistency
* Use macro so we can see the error file more clearly
* \param inputs the shape array to store the result
* \param index the index of in the array
* \param shape the inferred shape
*/
#define NNVM_ASSIGN_OUTPUT_SHAPE(attrs, outputs, index, shape) \
{ \
if (!shape_assign(&(outputs)[index], TShape(shape))) { \
LOG(FATAL) << attr_assign_error_msg(attrs, index, false, shape, \
(outputs)[index], "shape"); \
} \
}
/*!
* \brief macro assign type to out if out is unknown (-1) otherwise check consistency
* Use macro so we can see the error file more clearly
* \param inputs the type array to store the result
* \param index the index of in the array
* \param type the inferred type
*/
#define NNVM_ASSIGN_INPUT_TYPE(attrs, inputs, index, type) \
{ \
if (!type_assign(&(inputs)[index], type)) { \
LOG(FATAL) << attr_assign_error_msg(attrs, index, true, type, \
(inputs)[index], "type"); \
} \
}
/*!
* \brief macro assign type to out if out is unknown (-1) otherwise check consistency
* Use macro so we can see the error file more clearly
* \param inputs the type array to store the result
* \param index the index of in the array
* \param type the inferred type
*/
#define NNVM_ASSIGN_OUTPUT_TYPE(attrs, outputs, index, type) \
{ \
if (!type_assign(&(outputs)[index], type)) { \
LOG(FATAL) << attr_assign_error_msg(attrs, index, false, type, \
(outputs)[index], "type"); \
} \
}
#define NNVM_ASSIGN_LAYOUT(outputs, index, layout) \
{ \
if (layout.defined()) { \
(outputs)[index] = layout; \
} \
}
/*!
* \brief macro assign rhs shape to lhs
* Use macro so we can see the error file more clearly
* \param lhs lhs shape
* \param rhs rhs shape
*/
#define SHAPE_ASSIGN(lhs, rhs) \
if ((lhs).ndim() == 0) (lhs) = (rhs); \
else \
CHECK_EQ(lhs, rhs) << "shape inference inconsistent"; \
/*!
* \brief macro assign rhs type to lhs
* Use macro so we can see the error file more clearly
* \param lhs lhs type
* \param rhs rhs type
*/
#define DTYPE_ASSIGN(lhs, rhs) \
if ((lhs) == -1) (lhs) = (rhs); \
else \
CHECK_EQ(lhs, rhs) << "type inference inconsistent"; \
// simply return the shape as same
inline bool SameShape(const NodeAttrs& attrs,
std::vector<TShape> *ishape,
std::vector<TShape> *oshape) {
if (ishape->size() == 0 || (*ishape)[0].ndim() == 0) return false;
for (TShape& pshape : *oshape) {
pshape = (*ishape)[0];
}
for (TShape& pshape : *ishape) {
pshape = (*ishape)[0];
}
return true;
}
// return shape from node attrs
template<typename PType>
inline bool ZeroShape(const NodeAttrs& attrs,
std::vector<TShape> *ishape,
std::vector<TShape> *oshape) {
const TShape& ts = dmlc::get<PType>(attrs.parsed).shape;
if (ts.ndim() != 0) {
SHAPE_ASSIGN(oshape->at(0), ts);
return true;
} else {
return false;
}
}
// do not infer layout
inline bool ZeroLayout(const NodeAttrs& attrs,
std::vector<Layout> *in_layouts,
const std::vector<Layout> *last_in_layouts,
std::vector<Layout> *out_layouts) {
return true;
}
// simply assign output shape or type from input
template<typename AttrType, int in_index, int out_index>
inline bool AssignOutputAttr(const NodeAttrs& attrs,
std::vector<AttrType> *in_attrs,
std::vector<AttrType> *out_attrs) {
CHECK_LT(in_index, in_attrs->size());
CHECK_LT(out_index, out_attrs->size());
const TShape &dshape = in_attrs->at(in_index);
NNVM_ASSIGN_OUTPUT_SHAPE(attrs, *out_attrs, out_index, dshape);
return true;
}
// return type from node attrs
template<typename PType>
inline bool ZeroType(const NodeAttrs& attrs,
std::vector<int> *iattr,
std::vector<int> *oattr) {
int dtype = dmlc::get<PType>(attrs.parsed).dtype;
DTYPE_ASSIGN(oattr->at(0), dtype);
return true;
}
// Make zero grad node
inline std::vector<NodeEntry> MakeZeroGradNodes(
const NodePtr& n,
const std::vector<NodeEntry>& ograds) {
std::vector<NodeEntry> ret;
for (uint32_t i = 0; i < n->num_inputs(); ++i) {
std::ostringstream os;
ret.push_back(MakeNode("zeros_like", n->attrs.name + "_zero_grad",
{n->inputs[i]}));
}
return ret;
}
// Helper to make gradient node
inline std::vector<NodeEntry> MakeGradNode(
const char* op_name,
const NodePtr& n,
std::vector<NodeEntry> inputs,
std::unordered_map<std::string, std::string> attr = {{}}) {
NodePtr p = Node::Create();
p->attrs.op = nnvm::Op::Get(op_name);
p->attrs.name = n->attrs.name + "_grad";
p->inputs = std::move(inputs);
p->attrs.dict = std::move(attr);
if (p->attrs.op->attr_parser) {
p->attrs.op->attr_parser(&p->attrs);
}
std::vector<NodeEntry> ret;
for (uint32_t i = 0; i < p->num_outputs(); ++i) {
ret.emplace_back(NodeEntry{p, i, 0});
}
return ret;
}
} // namespace top
} // namespace nnvm
#endif // NNVM_TOP_OP_COMMON_H_