-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathintegrator_test.rs
47 lines (34 loc) · 1.08 KB
/
integrator_test.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
pub fn runge_kutta_4<F>(x: f64, t: f64, f: F, dt: f64) -> f64
where F : Fn(f64, f64) -> f64 {
let k1 = f(x, t);
let k2 = f(x + (dt / 2.0)*k1, t + dt / 2.0);
let k3 = f(x + (dt / 2.0)*k2, t + dt / 2.0);
let k4 = f(x + dt*k3, t + dt);
x + (k1 + 2.0*k2 + 2.0*k3 + k4) * (dt / 6.0)
}
pub fn euler<F>(x: f64, t: f64, f: F, dt: f64) -> f64
where F : Fn(f64, f64) -> f64 {
x + f(x, t) * dt
}
pub fn bogacki_shampine<F>(x: f64, t: f64, f: F, dt: f64) -> f64
where F : Fn(f64, f64) -> f64 {
let k1 = f(x, t);
let k2 = f(x + (dt / 2.0)*k1, t + dt / 2.0);
let k3 = f(x + (3.0 * dt / 4.0)*k1, t + (3.0 * dt / 4.0));
x + (2.0 * k1 + 3.0 * k2 + 4.0 * k3) * (dt / 9.0)
}
fn test() {
let mut x = 1.0;
let f = |x: f64, t: f64| x;
let e: f64 = 2.7182818285;
let dt = 0.5;
print!("{}, ", x);
for i in 0..10 {
let t = i as f64 * dt;
//x = e.powf(t + dt);
//x = euler(x, t, &f, dt);
x = runge_kutta_4(x, t, &f, dt);
//println!("e^{} = {}, e^{} ~ {}", t, e.powf(t), t, x);
print!("{}, ", x);
}
}