forked from mndrix/btcutil
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsecp256k1.go
238 lines (200 loc) · 6.28 KB
/
secp256k1.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
// Copyright 2010 The Go Authors. All rights reserved.
// Copyright 2011 ThePiachu. All rights reserved.
// Copyright 2013 Michael Hendricks. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package btcutil
// See http://www.hyperelliptic.org/EFD/g1p/auto-shortw.html
// and http://stackoverflow.com/a/8392111/174463
// for details on how this Koblitz curve math works.
import "crypto/elliptic"
import "fmt"
import "math/big"
// A Koblitz Curve with a=0.
type KoblitzCurve struct {
P *big.Int // the order of the underlying field
N *big.Int // the order of the base point
B *big.Int // the constant of the KoblitzCurve equation
Gx, Gy *big.Int // (x,y) of the base point
BitSize int // the size of the underlying field
}
// Returns the secp256k1 curve.
var secp256k1 *KoblitzCurve
func Secp256k1() elliptic.Curve {
return secp256k1
}
func init() {
var p, n, gx, gy big.Int
fmt.Sscan("0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F", &p)
fmt.Sscan("0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141", &n)
fmt.Sscan("0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798", &gx)
fmt.Sscan("0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8", &gy)
b := big.NewInt(7)
secp256k1 = &KoblitzCurve{
P: &p,
N: &n,
B: b,
Gx: &gx,
Gy: &gy,
BitSize: 256,
}
}
func (curve *KoblitzCurve) IsOnCurve(x, y *big.Int) bool {
// y² = x³ + b
y2 := new(big.Int).Mul(y, y)
y2.Mod(y2, curve.P)
x3 := new(big.Int).Mul(x, x)
x3.Mul(x3, x)
x3.Add(x3, curve.B)
x3.Mod(x3, curve.P)
return x3.Cmp(y2) == 0
}
// affineFromJacobian reverses the Jacobian transform.
func (curve *KoblitzCurve) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) {
zinv := new(big.Int).ModInverse(z, curve.P)
zinvsq := new(big.Int).Mul(zinv, zinv)
xOut = new(big.Int).Mul(x, zinvsq)
xOut.Mod(xOut, curve.P)
zinvsq.Mul(zinvsq, zinv)
yOut = new(big.Int).Mul(y, zinvsq)
yOut.Mod(yOut, curve.P)
return
}
func (curve *KoblitzCurve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
z := new(big.Int).SetInt64(1)
return curve.affineFromJacobian(curve.addJacobian(x1, y1, z, x2, y2, z))
}
// addJacobian takes two points in Jacobian coordinates, (x1, y1, z1) and
// (x2, y2, z2) and returns their sum, also in Jacobian form.
func (curve *KoblitzCurve) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) {
// See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
z1z1 := new(big.Int).Mul(z1, z1)
z1z1.Mod(z1z1, curve.P)
z2z2 := new(big.Int).Mul(z2, z2)
z2z2.Mod(z2z2, curve.P)
u1 := new(big.Int).Mul(x1, z2z2)
u1.Mod(u1, curve.P)
u2 := new(big.Int).Mul(x2, z1z1)
u2.Mod(u2, curve.P)
h := new(big.Int).Sub(u2, u1)
if h.Sign() == -1 {
h.Add(h, curve.P)
}
i := new(big.Int).Lsh(h, 1)
i.Mul(i, i)
j := new(big.Int).Mul(h, i)
s1 := new(big.Int).Mul(y1, z2)
s1.Mul(s1, z2z2)
s1.Mod(s1, curve.P)
s2 := new(big.Int).Mul(y2, z1)
s2.Mul(s2, z1z1)
s2.Mod(s2, curve.P)
r := new(big.Int).Sub(s2, s1)
if r.Sign() == -1 {
r.Add(r, curve.P)
}
r.Lsh(r, 1)
v := new(big.Int).Mul(u1, i)
x3 := new(big.Int).Set(r)
x3.Mul(x3, x3)
x3.Sub(x3, j)
x3.Sub(x3, v)
x3.Sub(x3, v)
x3.Mod(x3, curve.P)
y3 := new(big.Int).Set(r)
v.Sub(v, x3)
y3.Mul(y3, v)
s1.Mul(s1, j)
s1.Lsh(s1, 1)
y3.Sub(y3, s1)
y3.Mod(y3, curve.P)
z3 := new(big.Int).Add(z1, z2)
z3.Mul(z3, z3)
z3.Sub(z3, z1z1)
if z3.Sign() == -1 {
z3.Add(z3, curve.P)
}
z3.Sub(z3, z2z2)
if z3.Sign() == -1 {
z3.Add(z3, curve.P)
}
z3.Mul(z3, h)
z3.Mod(z3, curve.P)
return x3, y3, z3
}
func (curve *KoblitzCurve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) {
z1 := new(big.Int).SetInt64(1)
return curve.affineFromJacobian(curve.doubleJacobian(x1, y1, z1))
}
// doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and
// returns its double, also in Jacobian form.
func (curve *KoblitzCurve) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) {
// See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
a := new(big.Int).Mul(x, x) //X1²
b := new(big.Int).Mul(y, y) //Y1²
c := new(big.Int).Mul(b, b) //B²
d := new(big.Int).Add(x, b) //X1+B
d.Mul(d, d) //(X1+B)²
d.Sub(d, a) //(X1+B)²-A
d.Sub(d, c) //(X1+B)²-A-C
d.Mul(d, big.NewInt(2)) //2*((X1+B)²-A-C)
e := new(big.Int).Mul(big.NewInt(3), a) //3*A
f := new(big.Int).Mul(e, e) //E²
x3 := new(big.Int).Mul(big.NewInt(2), d) //2*D
x3.Sub(f, x3) //F-2*D
x3.Mod(x3, curve.P)
y3 := new(big.Int).Sub(d, x3) //D-X3
y3.Mul(e, y3) //E*(D-X3)
y3.Sub(y3, new(big.Int).Mul(big.NewInt(8), c)) //E*(D-X3)-8*C
y3.Mod(y3, curve.P)
z3 := new(big.Int).Mul(y, z) //Y1*Z1
z3.Mul(big.NewInt(2), z3) //3*Y1*Z1
z3.Mod(z3, curve.P)
return x3, y3, z3
}
func (curve *KoblitzCurve) ScalarMult(Bx, By *big.Int, k []byte) (*big.Int, *big.Int) {
// We have a slight problem in that the identity of the group (the
// point at infinity) cannot be represented in (x, y) form on a finite
// machine. Thus the standard add/double algorithm has to be tweaked
// slightly: our initial state is not the identity, but x, and we
// ignore the first true bit in |k|. If we don't find any true bits in
// |k|, then we return nil, nil, because we cannot return the identity
// element.
Bz := new(big.Int).SetInt64(1)
x := Bx
y := By
z := Bz
seenFirstTrue := false
for _, byte := range k {
for bitNum := 0; bitNum < 8; bitNum++ {
if seenFirstTrue {
x, y, z = curve.doubleJacobian(x, y, z)
}
if byte&0x80 == 0x80 {
if !seenFirstTrue {
seenFirstTrue = true
} else {
x, y, z = curve.addJacobian(Bx, By, Bz, x, y, z)
}
}
byte <<= 1
}
}
if !seenFirstTrue {
return nil, nil
}
return curve.affineFromJacobian(x, y, z)
}
func (curve *KoblitzCurve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) {
return curve.ScalarMult(curve.Gx, curve.Gy, k)
}
func (curve *KoblitzCurve) Params() *elliptic.CurveParams {
return &elliptic.CurveParams{
P: curve.P,
N: curve.N,
B: curve.B,
Gx: curve.Gx,
Gy: curve.Gy,
BitSize: curve.BitSize,
}
}