forked from sqlcipher/sqlcipher
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpager.c
7754 lines (7193 loc) · 291 KB
/
pager.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
** 2001 September 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This is the implementation of the page cache subsystem or "pager".
**
** The pager is used to access a database disk file. It implements
** atomic commit and rollback through the use of a journal file that
** is separate from the database file. The pager also implements file
** locking to prevent two processes from writing the same database
** file simultaneously, or one process from reading the database while
** another is writing.
*/
#ifndef SQLITE_OMIT_DISKIO
#include "sqliteInt.h"
#include "wal.h"
/******************* NOTES ON THE DESIGN OF THE PAGER ************************
**
** This comment block describes invariants that hold when using a rollback
** journal. These invariants do not apply for journal_mode=WAL,
** journal_mode=MEMORY, or journal_mode=OFF.
**
** Within this comment block, a page is deemed to have been synced
** automatically as soon as it is written when PRAGMA synchronous=OFF.
** Otherwise, the page is not synced until the xSync method of the VFS
** is called successfully on the file containing the page.
**
** Definition: A page of the database file is said to be "overwriteable" if
** one or more of the following are true about the page:
**
** (a) The original content of the page as it was at the beginning of
** the transaction has been written into the rollback journal and
** synced.
**
** (b) The page was a freelist leaf page at the start of the transaction.
**
** (c) The page number is greater than the largest page that existed in
** the database file at the start of the transaction.
**
** (1) A page of the database file is never overwritten unless one of the
** following are true:
**
** (a) The page and all other pages on the same sector are overwriteable.
**
** (b) The atomic page write optimization is enabled, and the entire
** transaction other than the update of the transaction sequence
** number consists of a single page change.
**
** (2) The content of a page written into the rollback journal exactly matches
** both the content in the database when the rollback journal was written
** and the content in the database at the beginning of the current
** transaction.
**
** (3) Writes to the database file are an integer multiple of the page size
** in length and are aligned on a page boundary.
**
** (4) Reads from the database file are either aligned on a page boundary and
** an integer multiple of the page size in length or are taken from the
** first 100 bytes of the database file.
**
** (5) All writes to the database file are synced prior to the rollback journal
** being deleted, truncated, or zeroed.
**
** (6) If a master journal file is used, then all writes to the database file
** are synced prior to the master journal being deleted.
**
** Definition: Two databases (or the same database at two points it time)
** are said to be "logically equivalent" if they give the same answer to
** all queries. Note in particular the content of freelist leaf
** pages can be changed arbitrarily without affecting the logical equivalence
** of the database.
**
** (7) At any time, if any subset, including the empty set and the total set,
** of the unsynced changes to a rollback journal are removed and the
** journal is rolled back, the resulting database file will be logically
** equivalent to the database file at the beginning of the transaction.
**
** (8) When a transaction is rolled back, the xTruncate method of the VFS
** is called to restore the database file to the same size it was at
** the beginning of the transaction. (In some VFSes, the xTruncate
** method is a no-op, but that does not change the fact the SQLite will
** invoke it.)
**
** (9) Whenever the database file is modified, at least one bit in the range
** of bytes from 24 through 39 inclusive will be changed prior to releasing
** the EXCLUSIVE lock, thus signaling other connections on the same
** database to flush their caches.
**
** (10) The pattern of bits in bytes 24 through 39 shall not repeat in less
** than one billion transactions.
**
** (11) A database file is well-formed at the beginning and at the conclusion
** of every transaction.
**
** (12) An EXCLUSIVE lock is held on the database file when writing to
** the database file.
**
** (13) A SHARED lock is held on the database file while reading any
** content out of the database file.
**
******************************************************************************/
/*
** Macros for troubleshooting. Normally turned off
*/
#if 0
int sqlite3PagerTrace=1; /* True to enable tracing */
#define sqlite3DebugPrintf printf
#define PAGERTRACE(X) if( sqlite3PagerTrace ){ sqlite3DebugPrintf X; }
#else
#define PAGERTRACE(X)
#endif
/*
** The following two macros are used within the PAGERTRACE() macros above
** to print out file-descriptors.
**
** PAGERID() takes a pointer to a Pager struct as its argument. The
** associated file-descriptor is returned. FILEHANDLEID() takes an sqlite3_file
** struct as its argument.
*/
#define PAGERID(p) (SQLITE_PTR_TO_INT(p->fd))
#define FILEHANDLEID(fd) (SQLITE_PTR_TO_INT(fd))
/*
** The Pager.eState variable stores the current 'state' of a pager. A
** pager may be in any one of the seven states shown in the following
** state diagram.
**
** OPEN <------+------+
** | | |
** V | |
** +---------> READER-------+ |
** | | |
** | V |
** |<-------WRITER_LOCKED------> ERROR
** | | ^
** | V |
** |<------WRITER_CACHEMOD-------->|
** | | |
** | V |
** |<-------WRITER_DBMOD---------->|
** | | |
** | V |
** +<------WRITER_FINISHED-------->+
**
**
** List of state transitions and the C [function] that performs each:
**
** OPEN -> READER [sqlite3PagerSharedLock]
** READER -> OPEN [pager_unlock]
**
** READER -> WRITER_LOCKED [sqlite3PagerBegin]
** WRITER_LOCKED -> WRITER_CACHEMOD [pager_open_journal]
** WRITER_CACHEMOD -> WRITER_DBMOD [syncJournal]
** WRITER_DBMOD -> WRITER_FINISHED [sqlite3PagerCommitPhaseOne]
** WRITER_*** -> READER [pager_end_transaction]
**
** WRITER_*** -> ERROR [pager_error]
** ERROR -> OPEN [pager_unlock]
**
**
** OPEN:
**
** The pager starts up in this state. Nothing is guaranteed in this
** state - the file may or may not be locked and the database size is
** unknown. The database may not be read or written.
**
** * No read or write transaction is active.
** * Any lock, or no lock at all, may be held on the database file.
** * The dbSize, dbOrigSize and dbFileSize variables may not be trusted.
**
** READER:
**
** In this state all the requirements for reading the database in
** rollback (non-WAL) mode are met. Unless the pager is (or recently
** was) in exclusive-locking mode, a user-level read transaction is
** open. The database size is known in this state.
**
** A connection running with locking_mode=normal enters this state when
** it opens a read-transaction on the database and returns to state
** OPEN after the read-transaction is completed. However a connection
** running in locking_mode=exclusive (including temp databases) remains in
** this state even after the read-transaction is closed. The only way
** a locking_mode=exclusive connection can transition from READER to OPEN
** is via the ERROR state (see below).
**
** * A read transaction may be active (but a write-transaction cannot).
** * A SHARED or greater lock is held on the database file.
** * The dbSize variable may be trusted (even if a user-level read
** transaction is not active). The dbOrigSize and dbFileSize variables
** may not be trusted at this point.
** * If the database is a WAL database, then the WAL connection is open.
** * Even if a read-transaction is not open, it is guaranteed that
** there is no hot-journal in the file-system.
**
** WRITER_LOCKED:
**
** The pager moves to this state from READER when a write-transaction
** is first opened on the database. In WRITER_LOCKED state, all locks
** required to start a write-transaction are held, but no actual
** modifications to the cache or database have taken place.
**
** In rollback mode, a RESERVED or (if the transaction was opened with
** BEGIN EXCLUSIVE) EXCLUSIVE lock is obtained on the database file when
** moving to this state, but the journal file is not written to or opened
** to in this state. If the transaction is committed or rolled back while
** in WRITER_LOCKED state, all that is required is to unlock the database
** file.
**
** IN WAL mode, WalBeginWriteTransaction() is called to lock the log file.
** If the connection is running with locking_mode=exclusive, an attempt
** is made to obtain an EXCLUSIVE lock on the database file.
**
** * A write transaction is active.
** * If the connection is open in rollback-mode, a RESERVED or greater
** lock is held on the database file.
** * If the connection is open in WAL-mode, a WAL write transaction
** is open (i.e. sqlite3WalBeginWriteTransaction() has been successfully
** called).
** * The dbSize, dbOrigSize and dbFileSize variables are all valid.
** * The contents of the pager cache have not been modified.
** * The journal file may or may not be open.
** * Nothing (not even the first header) has been written to the journal.
**
** WRITER_CACHEMOD:
**
** A pager moves from WRITER_LOCKED state to this state when a page is
** first modified by the upper layer. In rollback mode the journal file
** is opened (if it is not already open) and a header written to the
** start of it. The database file on disk has not been modified.
**
** * A write transaction is active.
** * A RESERVED or greater lock is held on the database file.
** * The journal file is open and the first header has been written
** to it, but the header has not been synced to disk.
** * The contents of the page cache have been modified.
**
** WRITER_DBMOD:
**
** The pager transitions from WRITER_CACHEMOD into WRITER_DBMOD state
** when it modifies the contents of the database file. WAL connections
** never enter this state (since they do not modify the database file,
** just the log file).
**
** * A write transaction is active.
** * An EXCLUSIVE or greater lock is held on the database file.
** * The journal file is open and the first header has been written
** and synced to disk.
** * The contents of the page cache have been modified (and possibly
** written to disk).
**
** WRITER_FINISHED:
**
** It is not possible for a WAL connection to enter this state.
**
** A rollback-mode pager changes to WRITER_FINISHED state from WRITER_DBMOD
** state after the entire transaction has been successfully written into the
** database file. In this state the transaction may be committed simply
** by finalizing the journal file. Once in WRITER_FINISHED state, it is
** not possible to modify the database further. At this point, the upper
** layer must either commit or rollback the transaction.
**
** * A write transaction is active.
** * An EXCLUSIVE or greater lock is held on the database file.
** * All writing and syncing of journal and database data has finished.
** If no error occurred, all that remains is to finalize the journal to
** commit the transaction. If an error did occur, the caller will need
** to rollback the transaction.
**
** ERROR:
**
** The ERROR state is entered when an IO or disk-full error (including
** SQLITE_IOERR_NOMEM) occurs at a point in the code that makes it
** difficult to be sure that the in-memory pager state (cache contents,
** db size etc.) are consistent with the contents of the file-system.
**
** Temporary pager files may enter the ERROR state, but in-memory pagers
** cannot.
**
** For example, if an IO error occurs while performing a rollback,
** the contents of the page-cache may be left in an inconsistent state.
** At this point it would be dangerous to change back to READER state
** (as usually happens after a rollback). Any subsequent readers might
** report database corruption (due to the inconsistent cache), and if
** they upgrade to writers, they may inadvertently corrupt the database
** file. To avoid this hazard, the pager switches into the ERROR state
** instead of READER following such an error.
**
** Once it has entered the ERROR state, any attempt to use the pager
** to read or write data returns an error. Eventually, once all
** outstanding transactions have been abandoned, the pager is able to
** transition back to OPEN state, discarding the contents of the
** page-cache and any other in-memory state at the same time. Everything
** is reloaded from disk (and, if necessary, hot-journal rollback peformed)
** when a read-transaction is next opened on the pager (transitioning
** the pager into READER state). At that point the system has recovered
** from the error.
**
** Specifically, the pager jumps into the ERROR state if:
**
** 1. An error occurs while attempting a rollback. This happens in
** function sqlite3PagerRollback().
**
** 2. An error occurs while attempting to finalize a journal file
** following a commit in function sqlite3PagerCommitPhaseTwo().
**
** 3. An error occurs while attempting to write to the journal or
** database file in function pagerStress() in order to free up
** memory.
**
** In other cases, the error is returned to the b-tree layer. The b-tree
** layer then attempts a rollback operation. If the error condition
** persists, the pager enters the ERROR state via condition (1) above.
**
** Condition (3) is necessary because it can be triggered by a read-only
** statement executed within a transaction. In this case, if the error
** code were simply returned to the user, the b-tree layer would not
** automatically attempt a rollback, as it assumes that an error in a
** read-only statement cannot leave the pager in an internally inconsistent
** state.
**
** * The Pager.errCode variable is set to something other than SQLITE_OK.
** * There are one or more outstanding references to pages (after the
** last reference is dropped the pager should move back to OPEN state).
** * The pager is not an in-memory pager.
**
**
** Notes:
**
** * A pager is never in WRITER_DBMOD or WRITER_FINISHED state if the
** connection is open in WAL mode. A WAL connection is always in one
** of the first four states.
**
** * Normally, a connection open in exclusive mode is never in PAGER_OPEN
** state. There are two exceptions: immediately after exclusive-mode has
** been turned on (and before any read or write transactions are
** executed), and when the pager is leaving the "error state".
**
** * See also: assert_pager_state().
*/
#define PAGER_OPEN 0
#define PAGER_READER 1
#define PAGER_WRITER_LOCKED 2
#define PAGER_WRITER_CACHEMOD 3
#define PAGER_WRITER_DBMOD 4
#define PAGER_WRITER_FINISHED 5
#define PAGER_ERROR 6
/*
** The Pager.eLock variable is almost always set to one of the
** following locking-states, according to the lock currently held on
** the database file: NO_LOCK, SHARED_LOCK, RESERVED_LOCK or EXCLUSIVE_LOCK.
** This variable is kept up to date as locks are taken and released by
** the pagerLockDb() and pagerUnlockDb() wrappers.
**
** If the VFS xLock() or xUnlock() returns an error other than SQLITE_BUSY
** (i.e. one of the SQLITE_IOERR subtypes), it is not clear whether or not
** the operation was successful. In these circumstances pagerLockDb() and
** pagerUnlockDb() take a conservative approach - eLock is always updated
** when unlocking the file, and only updated when locking the file if the
** VFS call is successful. This way, the Pager.eLock variable may be set
** to a less exclusive (lower) value than the lock that is actually held
** at the system level, but it is never set to a more exclusive value.
**
** This is usually safe. If an xUnlock fails or appears to fail, there may
** be a few redundant xLock() calls or a lock may be held for longer than
** required, but nothing really goes wrong.
**
** The exception is when the database file is unlocked as the pager moves
** from ERROR to OPEN state. At this point there may be a hot-journal file
** in the file-system that needs to be rolled back (as part of an OPEN->SHARED
** transition, by the same pager or any other). If the call to xUnlock()
** fails at this point and the pager is left holding an EXCLUSIVE lock, this
** can confuse the call to xCheckReservedLock() call made later as part
** of hot-journal detection.
**
** xCheckReservedLock() is defined as returning true "if there is a RESERVED
** lock held by this process or any others". So xCheckReservedLock may
** return true because the caller itself is holding an EXCLUSIVE lock (but
** doesn't know it because of a previous error in xUnlock). If this happens
** a hot-journal may be mistaken for a journal being created by an active
** transaction in another process, causing SQLite to read from the database
** without rolling it back.
**
** To work around this, if a call to xUnlock() fails when unlocking the
** database in the ERROR state, Pager.eLock is set to UNKNOWN_LOCK. It
** is only changed back to a real locking state after a successful call
** to xLock(EXCLUSIVE). Also, the code to do the OPEN->SHARED state transition
** omits the check for a hot-journal if Pager.eLock is set to UNKNOWN_LOCK
** lock. Instead, it assumes a hot-journal exists and obtains an EXCLUSIVE
** lock on the database file before attempting to roll it back. See function
** PagerSharedLock() for more detail.
**
** Pager.eLock may only be set to UNKNOWN_LOCK when the pager is in
** PAGER_OPEN state.
*/
#define UNKNOWN_LOCK (EXCLUSIVE_LOCK+1)
/*
** A macro used for invoking the codec if there is one
*/
#ifdef SQLITE_HAS_CODEC
# define CODEC1(P,D,N,X,E) \
if( P->xCodec && P->xCodec(P->pCodec,D,N,X)==0 ){ E; }
# define CODEC2(P,D,N,X,E,O) \
if( P->xCodec==0 ){ O=(char*)D; }else \
if( (O=(char*)(P->xCodec(P->pCodec,D,N,X)))==0 ){ E; }
#else
# define CODEC1(P,D,N,X,E) /* NO-OP */
# define CODEC2(P,D,N,X,E,O) O=(char*)D
#endif
/*
** The maximum allowed sector size. 64KiB. If the xSectorsize() method
** returns a value larger than this, then MAX_SECTOR_SIZE is used instead.
** This could conceivably cause corruption following a power failure on
** such a system. This is currently an undocumented limit.
*/
#define MAX_SECTOR_SIZE 0x10000
/*
** An instance of the following structure is allocated for each active
** savepoint and statement transaction in the system. All such structures
** are stored in the Pager.aSavepoint[] array, which is allocated and
** resized using sqlite3Realloc().
**
** When a savepoint is created, the PagerSavepoint.iHdrOffset field is
** set to 0. If a journal-header is written into the main journal while
** the savepoint is active, then iHdrOffset is set to the byte offset
** immediately following the last journal record written into the main
** journal before the journal-header. This is required during savepoint
** rollback (see pagerPlaybackSavepoint()).
*/
typedef struct PagerSavepoint PagerSavepoint;
struct PagerSavepoint {
i64 iOffset; /* Starting offset in main journal */
i64 iHdrOffset; /* See above */
Bitvec *pInSavepoint; /* Set of pages in this savepoint */
Pgno nOrig; /* Original number of pages in file */
Pgno iSubRec; /* Index of first record in sub-journal */
#ifndef SQLITE_OMIT_WAL
u32 aWalData[WAL_SAVEPOINT_NDATA]; /* WAL savepoint context */
#endif
};
/*
** Bits of the Pager.doNotSpill flag. See further description below.
*/
#define SPILLFLAG_OFF 0x01 /* Never spill cache. Set via pragma */
#define SPILLFLAG_ROLLBACK 0x02 /* Current rolling back, so do not spill */
#define SPILLFLAG_NOSYNC 0x04 /* Spill is ok, but do not sync */
/*
** An open page cache is an instance of struct Pager. A description of
** some of the more important member variables follows:
**
** eState
**
** The current 'state' of the pager object. See the comment and state
** diagram above for a description of the pager state.
**
** eLock
**
** For a real on-disk database, the current lock held on the database file -
** NO_LOCK, SHARED_LOCK, RESERVED_LOCK or EXCLUSIVE_LOCK.
**
** For a temporary or in-memory database (neither of which require any
** locks), this variable is always set to EXCLUSIVE_LOCK. Since such
** databases always have Pager.exclusiveMode==1, this tricks the pager
** logic into thinking that it already has all the locks it will ever
** need (and no reason to release them).
**
** In some (obscure) circumstances, this variable may also be set to
** UNKNOWN_LOCK. See the comment above the #define of UNKNOWN_LOCK for
** details.
**
** changeCountDone
**
** This boolean variable is used to make sure that the change-counter
** (the 4-byte header field at byte offset 24 of the database file) is
** not updated more often than necessary.
**
** It is set to true when the change-counter field is updated, which
** can only happen if an exclusive lock is held on the database file.
** It is cleared (set to false) whenever an exclusive lock is
** relinquished on the database file. Each time a transaction is committed,
** The changeCountDone flag is inspected. If it is true, the work of
** updating the change-counter is omitted for the current transaction.
**
** This mechanism means that when running in exclusive mode, a connection
** need only update the change-counter once, for the first transaction
** committed.
**
** setMaster
**
** When PagerCommitPhaseOne() is called to commit a transaction, it may
** (or may not) specify a master-journal name to be written into the
** journal file before it is synced to disk.
**
** Whether or not a journal file contains a master-journal pointer affects
** the way in which the journal file is finalized after the transaction is
** committed or rolled back when running in "journal_mode=PERSIST" mode.
** If a journal file does not contain a master-journal pointer, it is
** finalized by overwriting the first journal header with zeroes. If
** it does contain a master-journal pointer the journal file is finalized
** by truncating it to zero bytes, just as if the connection were
** running in "journal_mode=truncate" mode.
**
** Journal files that contain master journal pointers cannot be finalized
** simply by overwriting the first journal-header with zeroes, as the
** master journal pointer could interfere with hot-journal rollback of any
** subsequently interrupted transaction that reuses the journal file.
**
** The flag is cleared as soon as the journal file is finalized (either
** by PagerCommitPhaseTwo or PagerRollback). If an IO error prevents the
** journal file from being successfully finalized, the setMaster flag
** is cleared anyway (and the pager will move to ERROR state).
**
** doNotSpill
**
** This variables control the behavior of cache-spills (calls made by
** the pcache module to the pagerStress() routine to write cached data
** to the file-system in order to free up memory).
**
** When bits SPILLFLAG_OFF or SPILLFLAG_ROLLBACK of doNotSpill are set,
** writing to the database from pagerStress() is disabled altogether.
** The SPILLFLAG_ROLLBACK case is done in a very obscure case that
** comes up during savepoint rollback that requires the pcache module
** to allocate a new page to prevent the journal file from being written
** while it is being traversed by code in pager_playback(). The SPILLFLAG_OFF
** case is a user preference.
**
** If the SPILLFLAG_NOSYNC bit is set, writing to the database from
** pagerStress() is permitted, but syncing the journal file is not.
** This flag is set by sqlite3PagerWrite() when the file-system sector-size
** is larger than the database page-size in order to prevent a journal sync
** from happening in between the journalling of two pages on the same sector.
**
** subjInMemory
**
** This is a boolean variable. If true, then any required sub-journal
** is opened as an in-memory journal file. If false, then in-memory
** sub-journals are only used for in-memory pager files.
**
** This variable is updated by the upper layer each time a new
** write-transaction is opened.
**
** dbSize, dbOrigSize, dbFileSize
**
** Variable dbSize is set to the number of pages in the database file.
** It is valid in PAGER_READER and higher states (all states except for
** OPEN and ERROR).
**
** dbSize is set based on the size of the database file, which may be
** larger than the size of the database (the value stored at offset
** 28 of the database header by the btree). If the size of the file
** is not an integer multiple of the page-size, the value stored in
** dbSize is rounded down (i.e. a 5KB file with 2K page-size has dbSize==2).
** Except, any file that is greater than 0 bytes in size is considered
** to have at least one page. (i.e. a 1KB file with 2K page-size leads
** to dbSize==1).
**
** During a write-transaction, if pages with page-numbers greater than
** dbSize are modified in the cache, dbSize is updated accordingly.
** Similarly, if the database is truncated using PagerTruncateImage(),
** dbSize is updated.
**
** Variables dbOrigSize and dbFileSize are valid in states
** PAGER_WRITER_LOCKED and higher. dbOrigSize is a copy of the dbSize
** variable at the start of the transaction. It is used during rollback,
** and to determine whether or not pages need to be journalled before
** being modified.
**
** Throughout a write-transaction, dbFileSize contains the size of
** the file on disk in pages. It is set to a copy of dbSize when the
** write-transaction is first opened, and updated when VFS calls are made
** to write or truncate the database file on disk.
**
** The only reason the dbFileSize variable is required is to suppress
** unnecessary calls to xTruncate() after committing a transaction. If,
** when a transaction is committed, the dbFileSize variable indicates
** that the database file is larger than the database image (Pager.dbSize),
** pager_truncate() is called. The pager_truncate() call uses xFilesize()
** to measure the database file on disk, and then truncates it if required.
** dbFileSize is not used when rolling back a transaction. In this case
** pager_truncate() is called unconditionally (which means there may be
** a call to xFilesize() that is not strictly required). In either case,
** pager_truncate() may cause the file to become smaller or larger.
**
** dbHintSize
**
** The dbHintSize variable is used to limit the number of calls made to
** the VFS xFileControl(FCNTL_SIZE_HINT) method.
**
** dbHintSize is set to a copy of the dbSize variable when a
** write-transaction is opened (at the same time as dbFileSize and
** dbOrigSize). If the xFileControl(FCNTL_SIZE_HINT) method is called,
** dbHintSize is increased to the number of pages that correspond to the
** size-hint passed to the method call. See pager_write_pagelist() for
** details.
**
** errCode
**
** The Pager.errCode variable is only ever used in PAGER_ERROR state. It
** is set to zero in all other states. In PAGER_ERROR state, Pager.errCode
** is always set to SQLITE_FULL, SQLITE_IOERR or one of the SQLITE_IOERR_XXX
** sub-codes.
**
** syncFlags, walSyncFlags
**
** syncFlags is either SQLITE_SYNC_NORMAL (0x02) or SQLITE_SYNC_FULL (0x03).
** syncFlags is used for rollback mode. walSyncFlags is used for WAL mode
** and contains the flags used to sync the checkpoint operations in the
** lower two bits, and sync flags used for transaction commits in the WAL
** file in bits 0x04 and 0x08. In other words, to get the correct sync flags
** for checkpoint operations, use (walSyncFlags&0x03) and to get the correct
** sync flags for transaction commit, use ((walSyncFlags>>2)&0x03). Note
** that with synchronous=NORMAL in WAL mode, transaction commit is not synced
** meaning that the 0x04 and 0x08 bits are both zero.
*/
struct Pager {
sqlite3_vfs *pVfs; /* OS functions to use for IO */
u8 exclusiveMode; /* Boolean. True if locking_mode==EXCLUSIVE */
u8 journalMode; /* One of the PAGER_JOURNALMODE_* values */
u8 useJournal; /* Use a rollback journal on this file */
u8 noSync; /* Do not sync the journal if true */
u8 fullSync; /* Do extra syncs of the journal for robustness */
u8 extraSync; /* sync directory after journal delete */
u8 syncFlags; /* SYNC_NORMAL or SYNC_FULL otherwise */
u8 walSyncFlags; /* See description above */
u8 tempFile; /* zFilename is a temporary or immutable file */
u8 noLock; /* Do not lock (except in WAL mode) */
u8 readOnly; /* True for a read-only database */
u8 memDb; /* True to inhibit all file I/O */
/**************************************************************************
** The following block contains those class members that change during
** routine operation. Class members not in this block are either fixed
** when the pager is first created or else only change when there is a
** significant mode change (such as changing the page_size, locking_mode,
** or the journal_mode). From another view, these class members describe
** the "state" of the pager, while other class members describe the
** "configuration" of the pager.
*/
u8 eState; /* Pager state (OPEN, READER, WRITER_LOCKED..) */
u8 eLock; /* Current lock held on database file */
u8 changeCountDone; /* Set after incrementing the change-counter */
u8 setMaster; /* True if a m-j name has been written to jrnl */
u8 doNotSpill; /* Do not spill the cache when non-zero */
u8 subjInMemory; /* True to use in-memory sub-journals */
u8 bUseFetch; /* True to use xFetch() */
u8 hasHeldSharedLock; /* True if a shared lock has ever been held */
Pgno dbSize; /* Number of pages in the database */
Pgno dbOrigSize; /* dbSize before the current transaction */
Pgno dbFileSize; /* Number of pages in the database file */
Pgno dbHintSize; /* Value passed to FCNTL_SIZE_HINT call */
int errCode; /* One of several kinds of errors */
int nRec; /* Pages journalled since last j-header written */
u32 cksumInit; /* Quasi-random value added to every checksum */
u32 nSubRec; /* Number of records written to sub-journal */
Bitvec *pInJournal; /* One bit for each page in the database file */
sqlite3_file *fd; /* File descriptor for database */
sqlite3_file *jfd; /* File descriptor for main journal */
sqlite3_file *sjfd; /* File descriptor for sub-journal */
i64 journalOff; /* Current write offset in the journal file */
i64 journalHdr; /* Byte offset to previous journal header */
sqlite3_backup *pBackup; /* Pointer to list of ongoing backup processes */
PagerSavepoint *aSavepoint; /* Array of active savepoints */
int nSavepoint; /* Number of elements in aSavepoint[] */
u32 iDataVersion; /* Changes whenever database content changes */
char dbFileVers[16]; /* Changes whenever database file changes */
int nMmapOut; /* Number of mmap pages currently outstanding */
sqlite3_int64 szMmap; /* Desired maximum mmap size */
PgHdr *pMmapFreelist; /* List of free mmap page headers (pDirty) */
/*
** End of the routinely-changing class members
***************************************************************************/
u16 nExtra; /* Add this many bytes to each in-memory page */
i16 nReserve; /* Number of unused bytes at end of each page */
u32 vfsFlags; /* Flags for sqlite3_vfs.xOpen() */
u32 sectorSize; /* Assumed sector size during rollback */
int pageSize; /* Number of bytes in a page */
Pgno mxPgno; /* Maximum allowed size of the database */
i64 journalSizeLimit; /* Size limit for persistent journal files */
char *zFilename; /* Name of the database file */
char *zJournal; /* Name of the journal file */
int (*xBusyHandler)(void*); /* Function to call when busy */
void *pBusyHandlerArg; /* Context argument for xBusyHandler */
int aStat[4]; /* Total cache hits, misses, writes, spills */
#ifdef SQLITE_TEST
int nRead; /* Database pages read */
#endif
void (*xReiniter)(DbPage*); /* Call this routine when reloading pages */
int (*xGet)(Pager*,Pgno,DbPage**,int); /* Routine to fetch a patch */
#ifdef SQLITE_HAS_CODEC
void *(*xCodec)(void*,void*,Pgno,int); /* Routine for en/decoding data */
void (*xCodecSizeChng)(void*,int,int); /* Notify of page size changes */
void (*xCodecFree)(void*); /* Destructor for the codec */
void *pCodec; /* First argument to xCodec... methods */
#endif
char *pTmpSpace; /* Pager.pageSize bytes of space for tmp use */
PCache *pPCache; /* Pointer to page cache object */
#ifndef SQLITE_OMIT_WAL
Wal *pWal; /* Write-ahead log used by "journal_mode=wal" */
char *zWal; /* File name for write-ahead log */
#endif
};
/*
** Indexes for use with Pager.aStat[]. The Pager.aStat[] array contains
** the values accessed by passing SQLITE_DBSTATUS_CACHE_HIT, CACHE_MISS
** or CACHE_WRITE to sqlite3_db_status().
*/
#define PAGER_STAT_HIT 0
#define PAGER_STAT_MISS 1
#define PAGER_STAT_WRITE 2
#define PAGER_STAT_SPILL 3
/*
** The following global variables hold counters used for
** testing purposes only. These variables do not exist in
** a non-testing build. These variables are not thread-safe.
*/
#ifdef SQLITE_TEST
int sqlite3_pager_readdb_count = 0; /* Number of full pages read from DB */
int sqlite3_pager_writedb_count = 0; /* Number of full pages written to DB */
int sqlite3_pager_writej_count = 0; /* Number of pages written to journal */
# define PAGER_INCR(v) v++
#else
# define PAGER_INCR(v)
#endif
/*
** Journal files begin with the following magic string. The data
** was obtained from /dev/random. It is used only as a sanity check.
**
** Since version 2.8.0, the journal format contains additional sanity
** checking information. If the power fails while the journal is being
** written, semi-random garbage data might appear in the journal
** file after power is restored. If an attempt is then made
** to roll the journal back, the database could be corrupted. The additional
** sanity checking data is an attempt to discover the garbage in the
** journal and ignore it.
**
** The sanity checking information for the new journal format consists
** of a 32-bit checksum on each page of data. The checksum covers both
** the page number and the pPager->pageSize bytes of data for the page.
** This cksum is initialized to a 32-bit random value that appears in the
** journal file right after the header. The random initializer is important,
** because garbage data that appears at the end of a journal is likely
** data that was once in other files that have now been deleted. If the
** garbage data came from an obsolete journal file, the checksums might
** be correct. But by initializing the checksum to random value which
** is different for every journal, we minimize that risk.
*/
static const unsigned char aJournalMagic[] = {
0xd9, 0xd5, 0x05, 0xf9, 0x20, 0xa1, 0x63, 0xd7,
};
/*
** The size of the of each page record in the journal is given by
** the following macro.
*/
#define JOURNAL_PG_SZ(pPager) ((pPager->pageSize) + 8)
/*
** The journal header size for this pager. This is usually the same
** size as a single disk sector. See also setSectorSize().
*/
#define JOURNAL_HDR_SZ(pPager) (pPager->sectorSize)
/*
** The macro MEMDB is true if we are dealing with an in-memory database.
** We do this as a macro so that if the SQLITE_OMIT_MEMORYDB macro is set,
** the value of MEMDB will be a constant and the compiler will optimize
** out code that would never execute.
*/
#ifdef SQLITE_OMIT_MEMORYDB
# define MEMDB 0
#else
# define MEMDB pPager->memDb
#endif
/*
** The macro USEFETCH is true if we are allowed to use the xFetch and xUnfetch
** interfaces to access the database using memory-mapped I/O.
*/
#if SQLITE_MAX_MMAP_SIZE>0
# define USEFETCH(x) ((x)->bUseFetch)
#else
# define USEFETCH(x) 0
#endif
/*
** The maximum legal page number is (2^31 - 1).
*/
#define PAGER_MAX_PGNO 2147483647
/*
** The argument to this macro is a file descriptor (type sqlite3_file*).
** Return 0 if it is not open, or non-zero (but not 1) if it is.
**
** This is so that expressions can be written as:
**
** if( isOpen(pPager->jfd) ){ ...
**
** instead of
**
** if( pPager->jfd->pMethods ){ ...
*/
#define isOpen(pFd) ((pFd)->pMethods!=0)
#ifdef SQLITE_DIRECT_OVERFLOW_READ
/*
** Return true if page pgno can be read directly from the database file
** by the b-tree layer. This is the case if:
**
** * the database file is open,
** * there are no dirty pages in the cache, and
** * the desired page is not currently in the wal file.
*/
int sqlite3PagerDirectReadOk(Pager *pPager, Pgno pgno){
if( pPager->fd->pMethods==0 ) return 0;
if( sqlite3PCacheIsDirty(pPager->pPCache) ) return 0;
#ifdef SQLITE_HAS_CODEC
if( pPager->xCodec!=0 ) return 0;
#endif
#ifndef SQLITE_OMIT_WAL
if( pPager->pWal ){
u32 iRead = 0;
int rc;
rc = sqlite3WalFindFrame(pPager->pWal, pgno, &iRead);
return (rc==SQLITE_OK && iRead==0);
}
#endif
return 1;
}
#endif
#ifndef SQLITE_OMIT_WAL
# define pagerUseWal(x) ((x)->pWal!=0)
#else
# define pagerUseWal(x) 0
# define pagerRollbackWal(x) 0
# define pagerWalFrames(v,w,x,y) 0
# define pagerOpenWalIfPresent(z) SQLITE_OK
# define pagerBeginReadTransaction(z) SQLITE_OK
#endif
#ifndef NDEBUG
/*
** Usage:
**
** assert( assert_pager_state(pPager) );
**
** This function runs many asserts to try to find inconsistencies in
** the internal state of the Pager object.
*/
static int assert_pager_state(Pager *p){
Pager *pPager = p;
/* State must be valid. */
assert( p->eState==PAGER_OPEN
|| p->eState==PAGER_READER
|| p->eState==PAGER_WRITER_LOCKED
|| p->eState==PAGER_WRITER_CACHEMOD
|| p->eState==PAGER_WRITER_DBMOD
|| p->eState==PAGER_WRITER_FINISHED
|| p->eState==PAGER_ERROR
);
/* Regardless of the current state, a temp-file connection always behaves
** as if it has an exclusive lock on the database file. It never updates
** the change-counter field, so the changeCountDone flag is always set.
*/
assert( p->tempFile==0 || p->eLock==EXCLUSIVE_LOCK );
assert( p->tempFile==0 || pPager->changeCountDone );
/* If the useJournal flag is clear, the journal-mode must be "OFF".
** And if the journal-mode is "OFF", the journal file must not be open.
*/
assert( p->journalMode==PAGER_JOURNALMODE_OFF || p->useJournal );
assert( p->journalMode!=PAGER_JOURNALMODE_OFF || !isOpen(p->jfd) );
/* Check that MEMDB implies noSync. And an in-memory journal. Since
** this means an in-memory pager performs no IO at all, it cannot encounter
** either SQLITE_IOERR or SQLITE_FULL during rollback or while finalizing
** a journal file. (although the in-memory journal implementation may
** return SQLITE_IOERR_NOMEM while the journal file is being written). It
** is therefore not possible for an in-memory pager to enter the ERROR
** state.
*/
if( MEMDB ){
assert( !isOpen(p->fd) );
assert( p->noSync );
assert( p->journalMode==PAGER_JOURNALMODE_OFF
|| p->journalMode==PAGER_JOURNALMODE_MEMORY
);
assert( p->eState!=PAGER_ERROR && p->eState!=PAGER_OPEN );
assert( pagerUseWal(p)==0 );
}
/* If changeCountDone is set, a RESERVED lock or greater must be held
** on the file.
*/
assert( pPager->changeCountDone==0 || pPager->eLock>=RESERVED_LOCK );
assert( p->eLock!=PENDING_LOCK );
switch( p->eState ){
case PAGER_OPEN:
assert( !MEMDB );
assert( pPager->errCode==SQLITE_OK );
assert( sqlite3PcacheRefCount(pPager->pPCache)==0 || pPager->tempFile );
break;
case PAGER_READER:
assert( pPager->errCode==SQLITE_OK );
assert( p->eLock!=UNKNOWN_LOCK );
assert( p->eLock>=SHARED_LOCK );
break;
case PAGER_WRITER_LOCKED:
assert( p->eLock!=UNKNOWN_LOCK );
assert( pPager->errCode==SQLITE_OK );
if( !pagerUseWal(pPager) ){
assert( p->eLock>=RESERVED_LOCK );
}
assert( pPager->dbSize==pPager->dbOrigSize );
assert( pPager->dbOrigSize==pPager->dbFileSize );
assert( pPager->dbOrigSize==pPager->dbHintSize );
assert( pPager->setMaster==0 );
break;
case PAGER_WRITER_CACHEMOD:
assert( p->eLock!=UNKNOWN_LOCK );
assert( pPager->errCode==SQLITE_OK );
if( !pagerUseWal(pPager) ){
/* It is possible that if journal_mode=wal here that neither the
** journal file nor the WAL file are open. This happens during
** a rollback transaction that switches from journal_mode=off
** to journal_mode=wal.
*/
assert( p->eLock>=RESERVED_LOCK );
assert( isOpen(p->jfd)
|| p->journalMode==PAGER_JOURNALMODE_OFF
|| p->journalMode==PAGER_JOURNALMODE_WAL
);
}
assert( pPager->dbOrigSize==pPager->dbFileSize );
assert( pPager->dbOrigSize==pPager->dbHintSize );
break;
case PAGER_WRITER_DBMOD:
assert( p->eLock==EXCLUSIVE_LOCK );
assert( pPager->errCode==SQLITE_OK );
assert( !pagerUseWal(pPager) );
assert( p->eLock>=EXCLUSIVE_LOCK );
assert( isOpen(p->jfd)
|| p->journalMode==PAGER_JOURNALMODE_OFF
|| p->journalMode==PAGER_JOURNALMODE_WAL
|| (sqlite3OsDeviceCharacteristics(p->fd)&SQLITE_IOCAP_BATCH_ATOMIC)
);
assert( pPager->dbOrigSize<=pPager->dbHintSize );
break;
case PAGER_WRITER_FINISHED:
assert( p->eLock==EXCLUSIVE_LOCK );
assert( pPager->errCode==SQLITE_OK );
assert( !pagerUseWal(pPager) );
assert( isOpen(p->jfd)
|| p->journalMode==PAGER_JOURNALMODE_OFF
|| p->journalMode==PAGER_JOURNALMODE_WAL
|| (sqlite3OsDeviceCharacteristics(p->fd)&SQLITE_IOCAP_BATCH_ATOMIC)
);
break;
case PAGER_ERROR:
/* There must be at least one outstanding reference to the pager if
** in ERROR state. Otherwise the pager should have already dropped
** back to OPEN state.
*/
assert( pPager->errCode!=SQLITE_OK );
assert( sqlite3PcacheRefCount(pPager->pPCache)>0 || pPager->tempFile );
break;
}