forked from torvalds/linux
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mm_init.c
2688 lines (2282 loc) · 75.1 KB
/
mm_init.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// SPDX-License-Identifier: GPL-2.0-only
/*
* mm_init.c - Memory initialisation verification and debugging
*
* Copyright 2008 IBM Corporation, 2008
* Author Mel Gorman <[email protected]>
*
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/kobject.h>
#include <linux/export.h>
#include <linux/memory.h>
#include <linux/notifier.h>
#include <linux/sched.h>
#include <linux/mman.h>
#include <linux/memblock.h>
#include <linux/page-isolation.h>
#include <linux/padata.h>
#include <linux/nmi.h>
#include <linux/buffer_head.h>
#include <linux/kmemleak.h>
#include <linux/kfence.h>
#include <linux/page_ext.h>
#include <linux/pti.h>
#include <linux/pgtable.h>
#include <linux/stackdepot.h>
#include <linux/swap.h>
#include <linux/cma.h>
#include <linux/crash_dump.h>
#include <linux/execmem.h>
#include <linux/vmstat.h>
#include "internal.h"
#include "slab.h"
#include "shuffle.h"
#include <asm/setup.h>
#ifdef CONFIG_DEBUG_MEMORY_INIT
int __meminitdata mminit_loglevel;
/* The zonelists are simply reported, validation is manual. */
void __init mminit_verify_zonelist(void)
{
int nid;
if (mminit_loglevel < MMINIT_VERIFY)
return;
for_each_online_node(nid) {
pg_data_t *pgdat = NODE_DATA(nid);
struct zone *zone;
struct zoneref *z;
struct zonelist *zonelist;
int i, listid, zoneid;
for (i = 0; i < MAX_ZONELISTS * MAX_NR_ZONES; i++) {
/* Identify the zone and nodelist */
zoneid = i % MAX_NR_ZONES;
listid = i / MAX_NR_ZONES;
zonelist = &pgdat->node_zonelists[listid];
zone = &pgdat->node_zones[zoneid];
if (!populated_zone(zone))
continue;
/* Print information about the zonelist */
printk(KERN_DEBUG "mminit::zonelist %s %d:%s = ",
listid > 0 ? "thisnode" : "general", nid,
zone->name);
/* Iterate the zonelist */
for_each_zone_zonelist(zone, z, zonelist, zoneid)
pr_cont("%d:%s ", zone_to_nid(zone), zone->name);
pr_cont("\n");
}
}
}
void __init mminit_verify_pageflags_layout(void)
{
int shift, width;
unsigned long or_mask, add_mask;
shift = BITS_PER_LONG;
width = shift - SECTIONS_WIDTH - NODES_WIDTH - ZONES_WIDTH
- LAST_CPUPID_SHIFT - KASAN_TAG_WIDTH - LRU_GEN_WIDTH - LRU_REFS_WIDTH;
mminit_dprintk(MMINIT_TRACE, "pageflags_layout_widths",
"Section %d Node %d Zone %d Lastcpupid %d Kasantag %d Gen %d Tier %d Flags %d\n",
SECTIONS_WIDTH,
NODES_WIDTH,
ZONES_WIDTH,
LAST_CPUPID_WIDTH,
KASAN_TAG_WIDTH,
LRU_GEN_WIDTH,
LRU_REFS_WIDTH,
NR_PAGEFLAGS);
mminit_dprintk(MMINIT_TRACE, "pageflags_layout_shifts",
"Section %d Node %d Zone %d Lastcpupid %d Kasantag %d\n",
SECTIONS_SHIFT,
NODES_SHIFT,
ZONES_SHIFT,
LAST_CPUPID_SHIFT,
KASAN_TAG_WIDTH);
mminit_dprintk(MMINIT_TRACE, "pageflags_layout_pgshifts",
"Section %lu Node %lu Zone %lu Lastcpupid %lu Kasantag %lu\n",
(unsigned long)SECTIONS_PGSHIFT,
(unsigned long)NODES_PGSHIFT,
(unsigned long)ZONES_PGSHIFT,
(unsigned long)LAST_CPUPID_PGSHIFT,
(unsigned long)KASAN_TAG_PGSHIFT);
mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodezoneid",
"Node/Zone ID: %lu -> %lu\n",
(unsigned long)(ZONEID_PGOFF + ZONEID_SHIFT),
(unsigned long)ZONEID_PGOFF);
mminit_dprintk(MMINIT_TRACE, "pageflags_layout_usage",
"location: %d -> %d layout %d -> %d unused %d -> %d page-flags\n",
shift, width, width, NR_PAGEFLAGS, NR_PAGEFLAGS, 0);
#ifdef NODE_NOT_IN_PAGE_FLAGS
mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags",
"Node not in page flags");
#endif
#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags",
"Last cpupid not in page flags");
#endif
if (SECTIONS_WIDTH) {
shift -= SECTIONS_WIDTH;
BUG_ON(shift != SECTIONS_PGSHIFT);
}
if (NODES_WIDTH) {
shift -= NODES_WIDTH;
BUG_ON(shift != NODES_PGSHIFT);
}
if (ZONES_WIDTH) {
shift -= ZONES_WIDTH;
BUG_ON(shift != ZONES_PGSHIFT);
}
/* Check for bitmask overlaps */
or_mask = (ZONES_MASK << ZONES_PGSHIFT) |
(NODES_MASK << NODES_PGSHIFT) |
(SECTIONS_MASK << SECTIONS_PGSHIFT);
add_mask = (ZONES_MASK << ZONES_PGSHIFT) +
(NODES_MASK << NODES_PGSHIFT) +
(SECTIONS_MASK << SECTIONS_PGSHIFT);
BUG_ON(or_mask != add_mask);
}
static __init int set_mminit_loglevel(char *str)
{
get_option(&str, &mminit_loglevel);
return 0;
}
early_param("mminit_loglevel", set_mminit_loglevel);
#endif /* CONFIG_DEBUG_MEMORY_INIT */
struct kobject *mm_kobj;
#ifdef CONFIG_SMP
s32 vm_committed_as_batch = 32;
void mm_compute_batch(int overcommit_policy)
{
u64 memsized_batch;
s32 nr = num_present_cpus();
s32 batch = max_t(s32, nr*2, 32);
unsigned long ram_pages = totalram_pages();
/*
* For policy OVERCOMMIT_NEVER, set batch size to 0.4% of
* (total memory/#cpus), and lift it to 25% for other policies
* to easy the possible lock contention for percpu_counter
* vm_committed_as, while the max limit is INT_MAX
*/
if (overcommit_policy == OVERCOMMIT_NEVER)
memsized_batch = min_t(u64, ram_pages/nr/256, INT_MAX);
else
memsized_batch = min_t(u64, ram_pages/nr/4, INT_MAX);
vm_committed_as_batch = max_t(s32, memsized_batch, batch);
}
static int __meminit mm_compute_batch_notifier(struct notifier_block *self,
unsigned long action, void *arg)
{
switch (action) {
case MEM_ONLINE:
case MEM_OFFLINE:
mm_compute_batch(sysctl_overcommit_memory);
break;
default:
break;
}
return NOTIFY_OK;
}
static int __init mm_compute_batch_init(void)
{
mm_compute_batch(sysctl_overcommit_memory);
hotplug_memory_notifier(mm_compute_batch_notifier, MM_COMPUTE_BATCH_PRI);
return 0;
}
__initcall(mm_compute_batch_init);
#endif
static int __init mm_sysfs_init(void)
{
mm_kobj = kobject_create_and_add("mm", kernel_kobj);
if (!mm_kobj)
return -ENOMEM;
return 0;
}
postcore_initcall(mm_sysfs_init);
static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
static unsigned long required_kernelcore __initdata;
static unsigned long required_kernelcore_percent __initdata;
static unsigned long required_movablecore __initdata;
static unsigned long required_movablecore_percent __initdata;
static unsigned long nr_kernel_pages __initdata;
static unsigned long nr_all_pages __initdata;
static bool deferred_struct_pages __meminitdata;
static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
static int __init cmdline_parse_core(char *p, unsigned long *core,
unsigned long *percent)
{
unsigned long long coremem;
char *endptr;
if (!p)
return -EINVAL;
/* Value may be a percentage of total memory, otherwise bytes */
coremem = simple_strtoull(p, &endptr, 0);
if (*endptr == '%') {
/* Paranoid check for percent values greater than 100 */
WARN_ON(coremem > 100);
*percent = coremem;
} else {
coremem = memparse(p, &p);
/* Paranoid check that UL is enough for the coremem value */
WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
*core = coremem >> PAGE_SHIFT;
*percent = 0UL;
}
return 0;
}
bool mirrored_kernelcore __initdata_memblock;
/*
* kernelcore=size sets the amount of memory for use for allocations that
* cannot be reclaimed or migrated.
*/
static int __init cmdline_parse_kernelcore(char *p)
{
/* parse kernelcore=mirror */
if (parse_option_str(p, "mirror")) {
mirrored_kernelcore = true;
return 0;
}
return cmdline_parse_core(p, &required_kernelcore,
&required_kernelcore_percent);
}
early_param("kernelcore", cmdline_parse_kernelcore);
/*
* movablecore=size sets the amount of memory for use for allocations that
* can be reclaimed or migrated.
*/
static int __init cmdline_parse_movablecore(char *p)
{
return cmdline_parse_core(p, &required_movablecore,
&required_movablecore_percent);
}
early_param("movablecore", cmdline_parse_movablecore);
/*
* early_calculate_totalpages()
* Sum pages in active regions for movable zone.
* Populate N_MEMORY for calculating usable_nodes.
*/
static unsigned long __init early_calculate_totalpages(void)
{
unsigned long totalpages = 0;
unsigned long start_pfn, end_pfn;
int i, nid;
for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
unsigned long pages = end_pfn - start_pfn;
totalpages += pages;
if (pages)
node_set_state(nid, N_MEMORY);
}
return totalpages;
}
/*
* This finds a zone that can be used for ZONE_MOVABLE pages. The
* assumption is made that zones within a node are ordered in monotonic
* increasing memory addresses so that the "highest" populated zone is used
*/
static void __init find_usable_zone_for_movable(void)
{
int zone_index;
for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
if (zone_index == ZONE_MOVABLE)
continue;
if (arch_zone_highest_possible_pfn[zone_index] >
arch_zone_lowest_possible_pfn[zone_index])
break;
}
VM_BUG_ON(zone_index == -1);
movable_zone = zone_index;
}
/*
* Find the PFN the Movable zone begins in each node. Kernel memory
* is spread evenly between nodes as long as the nodes have enough
* memory. When they don't, some nodes will have more kernelcore than
* others
*/
static void __init find_zone_movable_pfns_for_nodes(void)
{
int i, nid;
unsigned long usable_startpfn;
unsigned long kernelcore_node, kernelcore_remaining;
/* save the state before borrow the nodemask */
nodemask_t saved_node_state = node_states[N_MEMORY];
unsigned long totalpages = early_calculate_totalpages();
int usable_nodes = nodes_weight(node_states[N_MEMORY]);
struct memblock_region *r;
/* Need to find movable_zone earlier when movable_node is specified. */
find_usable_zone_for_movable();
/*
* If movable_node is specified, ignore kernelcore and movablecore
* options.
*/
if (movable_node_is_enabled()) {
for_each_mem_region(r) {
if (!memblock_is_hotpluggable(r))
continue;
nid = memblock_get_region_node(r);
usable_startpfn = memblock_region_memory_base_pfn(r);
zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
min(usable_startpfn, zone_movable_pfn[nid]) :
usable_startpfn;
}
goto out2;
}
/*
* If kernelcore=mirror is specified, ignore movablecore option
*/
if (mirrored_kernelcore) {
bool mem_below_4gb_not_mirrored = false;
if (!memblock_has_mirror()) {
pr_warn("The system has no mirror memory, ignore kernelcore=mirror.\n");
goto out;
}
if (is_kdump_kernel()) {
pr_warn("The system is under kdump, ignore kernelcore=mirror.\n");
goto out;
}
for_each_mem_region(r) {
if (memblock_is_mirror(r))
continue;
nid = memblock_get_region_node(r);
usable_startpfn = memblock_region_memory_base_pfn(r);
if (usable_startpfn < PHYS_PFN(SZ_4G)) {
mem_below_4gb_not_mirrored = true;
continue;
}
zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
min(usable_startpfn, zone_movable_pfn[nid]) :
usable_startpfn;
}
if (mem_below_4gb_not_mirrored)
pr_warn("This configuration results in unmirrored kernel memory.\n");
goto out2;
}
/*
* If kernelcore=nn% or movablecore=nn% was specified, calculate the
* amount of necessary memory.
*/
if (required_kernelcore_percent)
required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
10000UL;
if (required_movablecore_percent)
required_movablecore = (totalpages * 100 * required_movablecore_percent) /
10000UL;
/*
* If movablecore= was specified, calculate what size of
* kernelcore that corresponds so that memory usable for
* any allocation type is evenly spread. If both kernelcore
* and movablecore are specified, then the value of kernelcore
* will be used for required_kernelcore if it's greater than
* what movablecore would have allowed.
*/
if (required_movablecore) {
unsigned long corepages;
/*
* Round-up so that ZONE_MOVABLE is at least as large as what
* was requested by the user
*/
required_movablecore =
roundup(required_movablecore, MAX_ORDER_NR_PAGES);
required_movablecore = min(totalpages, required_movablecore);
corepages = totalpages - required_movablecore;
required_kernelcore = max(required_kernelcore, corepages);
}
/*
* If kernelcore was not specified or kernelcore size is larger
* than totalpages, there is no ZONE_MOVABLE.
*/
if (!required_kernelcore || required_kernelcore >= totalpages)
goto out;
/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
restart:
/* Spread kernelcore memory as evenly as possible throughout nodes */
kernelcore_node = required_kernelcore / usable_nodes;
for_each_node_state(nid, N_MEMORY) {
unsigned long start_pfn, end_pfn;
/*
* Recalculate kernelcore_node if the division per node
* now exceeds what is necessary to satisfy the requested
* amount of memory for the kernel
*/
if (required_kernelcore < kernelcore_node)
kernelcore_node = required_kernelcore / usable_nodes;
/*
* As the map is walked, we track how much memory is usable
* by the kernel using kernelcore_remaining. When it is
* 0, the rest of the node is usable by ZONE_MOVABLE
*/
kernelcore_remaining = kernelcore_node;
/* Go through each range of PFNs within this node */
for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
unsigned long size_pages;
start_pfn = max(start_pfn, zone_movable_pfn[nid]);
if (start_pfn >= end_pfn)
continue;
/* Account for what is only usable for kernelcore */
if (start_pfn < usable_startpfn) {
unsigned long kernel_pages;
kernel_pages = min(end_pfn, usable_startpfn)
- start_pfn;
kernelcore_remaining -= min(kernel_pages,
kernelcore_remaining);
required_kernelcore -= min(kernel_pages,
required_kernelcore);
/* Continue if range is now fully accounted */
if (end_pfn <= usable_startpfn) {
/*
* Push zone_movable_pfn to the end so
* that if we have to rebalance
* kernelcore across nodes, we will
* not double account here
*/
zone_movable_pfn[nid] = end_pfn;
continue;
}
start_pfn = usable_startpfn;
}
/*
* The usable PFN range for ZONE_MOVABLE is from
* start_pfn->end_pfn. Calculate size_pages as the
* number of pages used as kernelcore
*/
size_pages = end_pfn - start_pfn;
if (size_pages > kernelcore_remaining)
size_pages = kernelcore_remaining;
zone_movable_pfn[nid] = start_pfn + size_pages;
/*
* Some kernelcore has been met, update counts and
* break if the kernelcore for this node has been
* satisfied
*/
required_kernelcore -= min(required_kernelcore,
size_pages);
kernelcore_remaining -= size_pages;
if (!kernelcore_remaining)
break;
}
}
/*
* If there is still required_kernelcore, we do another pass with one
* less node in the count. This will push zone_movable_pfn[nid] further
* along on the nodes that still have memory until kernelcore is
* satisfied
*/
usable_nodes--;
if (usable_nodes && required_kernelcore > usable_nodes)
goto restart;
out2:
/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
for (nid = 0; nid < MAX_NUMNODES; nid++) {
unsigned long start_pfn, end_pfn;
zone_movable_pfn[nid] =
roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
if (zone_movable_pfn[nid] >= end_pfn)
zone_movable_pfn[nid] = 0;
}
out:
/* restore the node_state */
node_states[N_MEMORY] = saved_node_state;
}
void __meminit __init_single_page(struct page *page, unsigned long pfn,
unsigned long zone, int nid)
{
mm_zero_struct_page(page);
set_page_links(page, zone, nid, pfn);
init_page_count(page);
atomic_set(&page->_mapcount, -1);
page_cpupid_reset_last(page);
page_kasan_tag_reset(page);
INIT_LIST_HEAD(&page->lru);
#ifdef WANT_PAGE_VIRTUAL
/* The shift won't overflow because ZONE_NORMAL is below 4G. */
if (!is_highmem_idx(zone))
set_page_address(page, __va(pfn << PAGE_SHIFT));
#endif
}
#ifdef CONFIG_NUMA
/*
* During memory init memblocks map pfns to nids. The search is expensive and
* this caches recent lookups. The implementation of __early_pfn_to_nid
* treats start/end as pfns.
*/
struct mminit_pfnnid_cache {
unsigned long last_start;
unsigned long last_end;
int last_nid;
};
static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
/*
* Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
*/
static int __meminit __early_pfn_to_nid(unsigned long pfn,
struct mminit_pfnnid_cache *state)
{
unsigned long start_pfn, end_pfn;
int nid;
if (state->last_start <= pfn && pfn < state->last_end)
return state->last_nid;
nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
if (nid != NUMA_NO_NODE) {
state->last_start = start_pfn;
state->last_end = end_pfn;
state->last_nid = nid;
}
return nid;
}
int __meminit early_pfn_to_nid(unsigned long pfn)
{
static DEFINE_SPINLOCK(early_pfn_lock);
int nid;
spin_lock(&early_pfn_lock);
nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
if (nid < 0)
nid = first_online_node;
spin_unlock(&early_pfn_lock);
return nid;
}
int hashdist = HASHDIST_DEFAULT;
static int __init set_hashdist(char *str)
{
if (!str)
return 0;
hashdist = simple_strtoul(str, &str, 0);
return 1;
}
__setup("hashdist=", set_hashdist);
static inline void fixup_hashdist(void)
{
if (num_node_state(N_MEMORY) == 1)
hashdist = 0;
}
#else
static inline void fixup_hashdist(void) {}
#endif /* CONFIG_NUMA */
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
{
pgdat->first_deferred_pfn = ULONG_MAX;
}
/* Returns true if the struct page for the pfn is initialised */
static inline bool __meminit early_page_initialised(unsigned long pfn, int nid)
{
if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
return false;
return true;
}
/*
* Returns true when the remaining initialisation should be deferred until
* later in the boot cycle when it can be parallelised.
*/
static bool __meminit
defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
{
static unsigned long prev_end_pfn, nr_initialised;
if (early_page_ext_enabled())
return false;
/* Always populate low zones for address-constrained allocations */
if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
return false;
if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
return true;
/*
* prev_end_pfn static that contains the end of previous zone
* No need to protect because called very early in boot before smp_init.
*/
if (prev_end_pfn != end_pfn) {
prev_end_pfn = end_pfn;
nr_initialised = 0;
}
/*
* We start only with one section of pages, more pages are added as
* needed until the rest of deferred pages are initialized.
*/
nr_initialised++;
if ((nr_initialised > PAGES_PER_SECTION) &&
(pfn & (PAGES_PER_SECTION - 1)) == 0) {
NODE_DATA(nid)->first_deferred_pfn = pfn;
return true;
}
return false;
}
static void __meminit init_reserved_page(unsigned long pfn, int nid)
{
pg_data_t *pgdat;
int zid;
if (early_page_initialised(pfn, nid))
return;
pgdat = NODE_DATA(nid);
for (zid = 0; zid < MAX_NR_ZONES; zid++) {
struct zone *zone = &pgdat->node_zones[zid];
if (zone_spans_pfn(zone, pfn))
break;
}
__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
}
#else
static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
static inline bool early_page_initialised(unsigned long pfn, int nid)
{
return true;
}
static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
{
return false;
}
static inline void init_reserved_page(unsigned long pfn, int nid)
{
}
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
/*
* Initialised pages do not have PageReserved set. This function is
* called for each range allocated by the bootmem allocator and
* marks the pages PageReserved. The remaining valid pages are later
* sent to the buddy page allocator.
*/
void __meminit reserve_bootmem_region(phys_addr_t start,
phys_addr_t end, int nid)
{
unsigned long start_pfn = PFN_DOWN(start);
unsigned long end_pfn = PFN_UP(end);
for (; start_pfn < end_pfn; start_pfn++) {
if (pfn_valid(start_pfn)) {
struct page *page = pfn_to_page(start_pfn);
init_reserved_page(start_pfn, nid);
/*
* no need for atomic set_bit because the struct
* page is not visible yet so nobody should
* access it yet.
*/
__SetPageReserved(page);
}
}
}
/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
static bool __meminit
overlap_memmap_init(unsigned long zone, unsigned long *pfn)
{
static struct memblock_region *r;
if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
for_each_mem_region(r) {
if (*pfn < memblock_region_memory_end_pfn(r))
break;
}
}
if (*pfn >= memblock_region_memory_base_pfn(r) &&
memblock_is_mirror(r)) {
*pfn = memblock_region_memory_end_pfn(r);
return true;
}
}
return false;
}
/*
* Only struct pages that correspond to ranges defined by memblock.memory
* are zeroed and initialized by going through __init_single_page() during
* memmap_init_zone_range().
*
* But, there could be struct pages that correspond to holes in
* memblock.memory. This can happen because of the following reasons:
* - physical memory bank size is not necessarily the exact multiple of the
* arbitrary section size
* - early reserved memory may not be listed in memblock.memory
* - non-memory regions covered by the contigious flatmem mapping
* - memory layouts defined with memmap= kernel parameter may not align
* nicely with memmap sections
*
* Explicitly initialize those struct pages so that:
* - PG_Reserved is set
* - zone and node links point to zone and node that span the page if the
* hole is in the middle of a zone
* - zone and node links point to adjacent zone/node if the hole falls on
* the zone boundary; the pages in such holes will be prepended to the
* zone/node above the hole except for the trailing pages in the last
* section that will be appended to the zone/node below.
*/
static void __init init_unavailable_range(unsigned long spfn,
unsigned long epfn,
int zone, int node)
{
unsigned long pfn;
u64 pgcnt = 0;
for (pfn = spfn; pfn < epfn; pfn++) {
if (!pfn_valid(pageblock_start_pfn(pfn))) {
pfn = pageblock_end_pfn(pfn) - 1;
continue;
}
__init_single_page(pfn_to_page(pfn), pfn, zone, node);
__SetPageReserved(pfn_to_page(pfn));
pgcnt++;
}
if (pgcnt)
pr_info("On node %d, zone %s: %lld pages in unavailable ranges\n",
node, zone_names[zone], pgcnt);
}
/*
* Initially all pages are reserved - free ones are freed
* up by memblock_free_all() once the early boot process is
* done. Non-atomic initialization, single-pass.
*
* All aligned pageblocks are initialized to the specified migratetype
* (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
* zone stats (e.g., nr_isolate_pageblock) are touched.
*/
void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
unsigned long start_pfn, unsigned long zone_end_pfn,
enum meminit_context context,
struct vmem_altmap *altmap, int migratetype)
{
unsigned long pfn, end_pfn = start_pfn + size;
struct page *page;
if (highest_memmap_pfn < end_pfn - 1)
highest_memmap_pfn = end_pfn - 1;
#ifdef CONFIG_ZONE_DEVICE
/*
* Honor reservation requested by the driver for this ZONE_DEVICE
* memory. We limit the total number of pages to initialize to just
* those that might contain the memory mapping. We will defer the
* ZONE_DEVICE page initialization until after we have released
* the hotplug lock.
*/
if (zone == ZONE_DEVICE) {
if (!altmap)
return;
if (start_pfn == altmap->base_pfn)
start_pfn += altmap->reserve;
end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
}
#endif
for (pfn = start_pfn; pfn < end_pfn; ) {
/*
* There can be holes in boot-time mem_map[]s handed to this
* function. They do not exist on hotplugged memory.
*/
if (context == MEMINIT_EARLY) {
if (overlap_memmap_init(zone, &pfn))
continue;
if (defer_init(nid, pfn, zone_end_pfn)) {
deferred_struct_pages = true;
break;
}
}
page = pfn_to_page(pfn);
__init_single_page(page, pfn, zone, nid);
if (context == MEMINIT_HOTPLUG) {
#ifdef CONFIG_ZONE_DEVICE
if (zone == ZONE_DEVICE)
__SetPageReserved(page);
else
#endif
__SetPageOffline(page);
}
/*
* Usually, we want to mark the pageblock MIGRATE_MOVABLE,
* such that unmovable allocations won't be scattered all
* over the place during system boot.
*/
if (pageblock_aligned(pfn)) {
set_pageblock_migratetype(page, migratetype);
cond_resched();
}
pfn++;
}
}
static void __init memmap_init_zone_range(struct zone *zone,
unsigned long start_pfn,
unsigned long end_pfn,
unsigned long *hole_pfn)
{
unsigned long zone_start_pfn = zone->zone_start_pfn;
unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
if (start_pfn >= end_pfn)
return;
memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
if (*hole_pfn < start_pfn)
init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
*hole_pfn = end_pfn;
}
static void __init memmap_init(void)
{
unsigned long start_pfn, end_pfn;
unsigned long hole_pfn = 0;
int i, j, zone_id = 0, nid;
for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
struct pglist_data *node = NODE_DATA(nid);
for (j = 0; j < MAX_NR_ZONES; j++) {
struct zone *zone = node->node_zones + j;
if (!populated_zone(zone))
continue;
memmap_init_zone_range(zone, start_pfn, end_pfn,
&hole_pfn);
zone_id = j;
}
}
#ifdef CONFIG_SPARSEMEM
/*
* Initialize the memory map for hole in the range [memory_end,
* section_end].
* Append the pages in this hole to the highest zone in the last
* node.
* The call to init_unavailable_range() is outside the ifdef to
* silence the compiler warining about zone_id set but not used;
* for FLATMEM it is a nop anyway
*/
end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
if (hole_pfn < end_pfn)
#endif
init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
}
#ifdef CONFIG_ZONE_DEVICE
static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
unsigned long zone_idx, int nid,
struct dev_pagemap *pgmap)
{
__init_single_page(page, pfn, zone_idx, nid);
/*
* Mark page reserved as it will need to wait for onlining
* phase for it to be fully associated with a zone.
*
* We can use the non-atomic __set_bit operation for setting
* the flag as we are still initializing the pages.
*/
__SetPageReserved(page);
/*
* ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
* and zone_device_data. It is a bug if a ZONE_DEVICE page is
* ever freed or placed on a driver-private list.
*/
page->pgmap = pgmap;
page->zone_device_data = NULL;