forked from yu4u/age-gender-estimation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_history.py
42 lines (34 loc) · 1.32 KB
/
plot_history.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import pandas as pd
import matplotlib.pyplot as plt
import argparse
import os
def get_args():
parser = argparse.ArgumentParser(description="This script shows training graph from history file.")
parser.add_argument("--input", "-i", type=str, required=True,
help="path to input history h5 file")
args = parser.parse_args()
return args
def main():
args = get_args()
input_path = args.input
df = pd.read_hdf(input_path, "history")
input_dir = os.path.dirname(input_path)
plt.plot(df["pred_gender_loss"], label="loss (gender)")
plt.plot(df["pred_age_loss"], label="loss (age)")
plt.plot(df["val_pred_gender_loss"], label="val_loss (gender)")
plt.plot(df["val_pred_age_loss"], label="val_loss (age)")
plt.xlabel("number of epochs")
plt.ylabel("loss")
plt.legend()
plt.savefig(os.path.join(input_dir, "loss.png"))
plt.cla()
plt.plot(df["pred_gender_acc"], label="accuracy (gender)")
plt.plot(df["pred_age_acc"], label="accuracy (age)")
plt.plot(df["val_pred_gender_acc"], label="val_accuracy (gender)")
plt.plot(df["val_pred_age_acc"], label="val_accuracy (age)")
plt.xlabel("number of epochs")
plt.ylabel("accuracy")
plt.legend()
plt.savefig(os.path.join(input_dir, "accuracy.png"))
if __name__ == '__main__':
main()