-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathend_to_end.py
64 lines (46 loc) · 1.77 KB
/
end_to_end.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import torch.nn as nn
import torch
from utils import tokenize, build_vocab
from embedding_layer import Embeddings
from positional_encoding import PositionalEncoding
from multi_head_attention import MultiHeadAttention
# list of sequences (3,)
sequences = ["I wonder what will come next!",
"This is a basic example paragraph.",
"Hello, what is a basic split?"]
# tokenize the sequences -> (batch_size, seq_length) -> (3,6)
tokenized_sequences = [tokenize(seq) for seq in sequences]
print(tokenized_sequences)
# concatenate the sequences
sequence_cluster = " ".join(sequences)
print(sequence_cluster)
# build the vocabulary (corpus)
word_table = build_vocab(sequence_cluster)
print(word_table)
# Integer encoding
encoded_sequence = [[word_table[word] for word in seq] for seq in tokenized_sequences]
print(encoded_sequence)
vocab_size = len(word_table)
print(vocab_size)
# set model embedding dimensions
d_model = 8
# create the initial embedding layer
# lookuptable = torch.rand(vocab_size, d_model) # matrix of size (14, 3)
# lookuptable = nn.Embedding(vocab_size, d_model)
# print(lookuptable.state_dict()['weight'])
lookuptable = Embeddings(vocab_size, d_model)
# apply embedding
indices = torch.Tensor(encoded_sequence).long() # (batch_size, seq_length, d_model)
# embeddings = embeddings[encoded_sequence]
embedded_input = lookuptable(indices)
print(embedded_input)
print(embedded_input.size())
pe = PositionalEncoding(d_model=d_model, dropout=0.1, max_length=10)
X = pe(embedded_input)
# set the n_heads
n_heads = 4
# create the attention layer
attention = MultiHeadAttention(d_model, n_heads, dropout=0.1)
# pass X through the attention layer three times to create Q, K, and V
output, attn_probs = attention(X, X, X, mask=None)
print("attention_value", output)