-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmpzspv.c
1103 lines (932 loc) · 32.7 KB
/
mpzspv.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* mpzspv.c - "mpz small prime polynomial" functions for arithmetic on mpzv's
reduced modulo a mpzspm
Copyright 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012 Dave Newman,
Jason Papadopoulos, Alexander Kruppa, Paul Zimmermann.
The SP Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The SP Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the SP Library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,
MA 02110-1301, USA. */
#include <stdio.h> /* for stderr */
#include <stdlib.h>
#include <string.h> /* for memset */
#include "ecm-impl.h"
#include "sp.h"
mpzspv_t
mpzspv_init (spv_size_t len, mpzspm_t mpzspm)
{
unsigned int i;
mpzspv_t x = (mpzspv_t) malloc (mpzspm->sp_num * sizeof (spv_t));
if (x == NULL)
return NULL;
for (i = 0; i < mpzspm->sp_num; i++)
{
x[i] = (spv_t) sp_aligned_malloc (len * sizeof (sp_t));
if (x[i] == NULL)
{
while (i--)
sp_aligned_free (x[i]);
free (x);
return NULL;
}
}
return x;
}
void
mpzspv_clear (mpzspv_t x, mpzspm_t mpzspm)
{
unsigned int i;
ASSERT (mpzspv_verify (x, 0, 0, mpzspm));
for (i = 0; i < mpzspm->sp_num; i++)
sp_aligned_free (x[i]);
free (x);
}
/* check that:
* - each of the spv's is at least offset + len long
* - the data specified by (offset, len) is correctly normalised in the
* range [0, sp)
*
* return 1 for success, 0 for failure */
int
mpzspv_verify (mpzspv_t x, spv_size_t offset, spv_size_t len, mpzspm_t mpzspm)
{
unsigned int i;
spv_size_t j;
for (i = 0; i < mpzspm->sp_num; i++)
{
for (j = offset; j < offset + len; j++)
if (x[i][j] >= mpzspm->spm[i]->sp)
return 0;
}
return 1;
}
void
mpzspv_set (mpzspv_t r, spv_size_t r_offset, mpzspv_t x, spv_size_t x_offset,
spv_size_t len, mpzspm_t mpzspm)
{
unsigned int i;
ASSERT (mpzspv_verify (r, r_offset + len, 0, mpzspm));
ASSERT (mpzspv_verify (x, x_offset, len, mpzspm));
for (i = 0; i < mpzspm->sp_num; i++)
spv_set (r[i] + r_offset, x[i] + x_offset, len);
}
void
mpzspv_revcopy (mpzspv_t r, spv_size_t r_offset, mpzspv_t x,
spv_size_t x_offset, spv_size_t len, mpzspm_t mpzspm)
{
unsigned int i;
ASSERT (mpzspv_verify (r, r_offset + len, 0, mpzspm));
ASSERT (mpzspv_verify (x, x_offset, len, mpzspm));
for (i = 0; i < mpzspm->sp_num; i++)
spv_rev (r[i] + r_offset, x[i] + x_offset, len);
}
void
mpzspv_set_sp (mpzspv_t r, spv_size_t offset, sp_t c, spv_size_t len,
mpzspm_t mpzspm)
{
unsigned int i;
ASSERT (mpzspv_verify (r, offset + len, 0, mpzspm));
ASSERT (c < SP_MIN); /* not strictly necessary but avoids mod functions */
for (i = 0; i < mpzspm->sp_num; i++)
spv_set_sp (r[i] + offset, c, len);
}
void
mpzspv_neg (mpzspv_t r, spv_size_t r_offset, mpzspv_t x, spv_size_t x_offset,
spv_size_t len, mpzspm_t mpzspm)
{
unsigned int i;
ASSERT (mpzspv_verify (r, r_offset + len, 0, mpzspm));
ASSERT (mpzspv_verify (x, x_offset, len, mpzspm));
for (i = 0; i < mpzspm->sp_num; i++)
spv_neg (r[i] + r_offset, x[i] + x_offset, len, mpzspm->spm[i]->sp);
}
void
mpzspv_add (mpzspv_t r, spv_size_t r_offset, mpzspv_t x, spv_size_t x_offset,
mpzspv_t y, spv_size_t y_offset, spv_size_t len, mpzspm_t mpzspm)
{
unsigned int i;
ASSERT (mpzspv_verify (r, r_offset + len, 0, mpzspm));
ASSERT (mpzspv_verify (x, x_offset, len, mpzspm));
for (i = 0; i < mpzspm->sp_num; i++)
spv_add (r[i] + r_offset, x[i] + x_offset, y[i] + y_offset, len,
mpzspm->spm[i]->sp);
}
void
mpzspv_reverse (mpzspv_t x, spv_size_t offset, spv_size_t len, mpzspm_t mpzspm)
{
unsigned int i;
spv_size_t j;
sp_t t;
spv_t spv;
ASSERT (mpzspv_verify (x, offset, len, mpzspm));
for (i = 0; i < mpzspm->sp_num; i++)
{
spv = x[i] + offset;
for (j = 0; j < len - 1 - j; j++)
{
t = spv[j];
spv[j] = spv[len - 1 - j];
spv[len - 1 - j] = t;
}
}
}
/* Return {xp, xn} mod p.
Assume 2p < B where B = 2^GMP_NUMB_LIMB.
We first compute {xp, xn} / B^n mod p using Montgomery reduction,
where the number N to factor has n limbs.
Then we multiply by B^(n+1) mod p (precomputed) and divide by B mod p.
Assume invm = -1/p mod B and Bpow = B^n mod p */
static mp_limb_t
ecm_mod_1 (mp_ptr xp, mp_size_t xn, mp_limb_t p, mp_size_t n,
mp_limb_t invm, mp_limb_t Bpow)
{
mp_limb_t q, cy, hi, lo, x0, x1;
if (xn == 0)
return 0;
/* the code below assumes xn <= n+1, thus we call mpn_mod_1 otherwise,
but this should never (or rarely) happen */
if (xn > n + 1)
return mpn_mod_1 (xp, xn, p);
x0 = xp[0];
cy = (mp_limb_t) 0;
while (n-- > 0)
{
/* Invariant: cy is the input carry on xp[1], x0 is xp[0] */
x1 = (xn > 1) ? xp[1] : 0;
q = x0 * invm; /* q = -x0/p mod B */
umul_ppmm (hi, lo, q, p); /* hi*B + lo = -x0 mod B */
/* Add hi*B + lo to x1*B + x0. Since p <= B-2 we have
hi*B + lo <= (B-1)(B-2) = B^2-3B+2, thus hi <= B-3 */
hi += cy + (lo != 0); /* cannot overflow */
x0 = x1 + hi;
cy = x0 < hi;
xn --;
xp ++;
}
if (cy != 0)
x0 -= p;
/* now x0 = {xp, xn} / B^n mod p */
umul_ppmm (x1, x0, x0, Bpow);
/* since Bpow < p, x1 <= p-1 */
q = x0 * invm;
umul_ppmm (hi, lo, q, p);
/* hi <= p-1 thus hi+x1+1 < 2p-1 < B */
hi = hi + x1 + (lo != 0);
while (hi >= p)
hi -= p;
return hi;
}
#ifdef TIMING_CRT
int mpzspv_from_mpzv_slow_time = 0;
int mpzspv_to_mpzv_time = 0;
int mpzspv_normalise_time = 0;
#endif
/* convert mpzvi to CRT representation, naive version */
static void
mpzspv_from_mpzv_slow (mpzspv_t x, const spv_size_t offset, mpz_t mpzvi,
mpzspm_t mpzspm)
{
const unsigned int sp_num = mpzspm->sp_num;
unsigned int j;
mp_size_t n = mpz_size (mpzspm->modulus);
#ifdef TIMING_CRT
mpzspv_from_mpzv_slow_time -= cputime ();
#endif
for (j = 0; j < sp_num; j++)
x[j][offset] = ecm_mod_1 (PTR(mpzvi), SIZ(mpzvi),
(mp_limb_t) mpzspm->spm[j]->sp, n,
mpzspm->spm[j]->invm, mpzspm->spm[j]->Bpow);
#ifdef TIMING_CRT
mpzspv_from_mpzv_slow_time += cputime ();
#endif
/* The typecast to mp_limb_t assumes that mp_limb_t is at least
as wide as sp_t */
}
/* convert mpzvi to CRT representation, fast version, assumes
mpzspm->T has been precomputed (see mpzspm.c) */
static void
mpzspv_from_mpzv_fast (mpzspv_t x, const spv_size_t offset, mpz_t mpzvi,
mpzspm_t mpzspm)
{
const unsigned int sp_num = mpzspm->sp_num;
unsigned int i, j, k, i0 = I0_THRESHOLD, I0;
mpzv_t *T = mpzspm->T;
unsigned int d = mpzspm->d, ni;
ASSERT (d > i0);
/* T[0] serves as vector of temporary mpz_t's, since it contains the small
primes, which are also in mpzspm->spm[j]->sp */
/* initially we split mpzvi in two */
ni = 1 << (d - 1);
mpz_mod (T[0][0], mpzvi, T[d-1][0]);
mpz_mod (T[0][ni], mpzvi, T[d-1][1]);
for (i = d-1; i-- > i0;)
{ /* goes down from depth i+1 to i */
ni = 1 << i;
for (j = k = 0; j + ni < sp_num; j += 2*ni, k += 2)
{
mpz_mod (T[0][j+ni], T[0][j], T[i][k+1]);
mpz_mod (T[0][j], T[0][j], T[i][k]);
}
/* for the last entry T[0][j] if j < sp_num, there is nothing to do */
}
/* last steps */
I0 = 1 << i0;
for (j = 0; j < sp_num; j += I0)
{
for (k = j; k < j + I0 && k < sp_num; k++)
x[k][offset] = mpn_mod_1 (PTR(T[0][j]), SIZ(T[0][j]),
(mp_limb_t) mpzspm->spm[k]->sp);
}
/* The typecast to mp_limb_t assumes that mp_limb_t is at least
as wide as sp_t */
}
ATTRIBUTE_UNUSED
static void
ntt_print_vec (const char *msg, const spv_t spv, const spv_size_t l,
const sp_t p)
{
spv_size_t i;
/* Warning: on some computers, for example gcc49.fsffrance.org,
"unsigned long" might be shorter than "sp_t" */
gmp_printf ("%s [%Nd", msg, (mp_ptr) spv, 1);
for (i = 1; i < l; i++)
gmp_printf (", %Nd", (mp_ptr) spv + i, 1);
printf ("] (mod %llu)\n", (long long unsigned int) p);
}
/* convert an array of len mpz_t numbers to CRT representation modulo
sp_num moduli */
void
mpzspv_from_mpzv (mpzspv_t x, const spv_size_t offset, const mpzv_t mpzv,
const spv_size_t len, mpzspm_t mpzspm)
{
const unsigned int sp_num = mpzspm->sp_num;
long i;
ASSERT (mpzspv_verify (x, offset + len, 0, mpzspm));
ASSERT (sizeof (mp_limb_t) >= sizeof (sp_t));
#ifdef TRACE_mpzspv_from_mpzv
for (i = 0; i < (long) len; i++)
gmp_printf ("mpzspv_from_mpzv: mpzv[%ld] = %Zd\n", i, mpzv[i]);
#endif
#if defined(_OPENMP)
#pragma omp parallel private(i) if (len > 16384)
{
/* Multi-threading with dynamic scheduling slows things down */
#pragma omp for schedule(static)
#endif
for (i = 0; i < (long) len; i++)
{
unsigned int j;
if (mpz_sgn (mpzv[i]) == 0)
{
for (j = 0; j < sp_num; j++)
x[j][i + offset] = 0;
}
else
{
ASSERT(mpz_sgn (mpzv[i]) > 0); /* We can't handle negative values */
if (mpzspm->T == NULL)
mpzspv_from_mpzv_slow (x, i + offset, mpzv[i], mpzspm);
else
mpzspv_from_mpzv_fast (x, i + offset, mpzv[i], mpzspm);
}
}
#if defined(_OPENMP)
}
#endif
#ifdef TRACE_mpzspv_from_mpzv
for (i = 0; i < (long) sp_num; i++)
ntt_print_vec ("mpzspv_from_mpzv: ", x[i] + offset, len, mpzspm->spm[i]->sp);
#endif
}
/* Convert the len residues x[][offset..offset+len-1] from "spv" (RNS) format
* to mpz_t format.
* See: Daniel J. Bernstein and Jonathan P. Sorenson,
* Modular Exponentiation via the explicit Chinese Remainder Theorem,
* Mathematics of Computation 2007,
* Theorem 2.1: Let p_1, ..., p_s be pairwise coprime integers. Write
* P = p_1 * ... * p_s. Let q_1, ..., q_s be integers with
* q_iP/p_i = 1 mod p_i. Let u be an integer with |u| < P/2. Let u_1, ..., u_s
* with u = u_i mod p_i. Let t_1, ..., t_s be integers with
* t_i = u_i q_i mod p_i. Then u = P \alpha - P round(\alpha) where
* \alpha = \sum_i t_i/p_i
*
* time: O(len * sp_num^2) where sp_num is proportional to the modulus size
* memory: MPZSPV_NORMALISE_STRIDE floats */
void
mpzspv_to_mpzv (mpzspv_t x, spv_size_t offset, mpzv_t mpzv,
spv_size_t len, mpzspm_t mpzspm)
{
unsigned int i;
spv_size_t k, l;
float *f = (float *) malloc (MPZSPV_NORMALISE_STRIDE * sizeof (float));
float prime_recip;
sp_t t;
spm_t *spm = mpzspm->spm;
mpz_t mt;
if (f == NULL)
{
fprintf (stderr, "Cannot allocate memory in mpzspv_to_mpzv\n");
exit (1);
}
ASSERT (mpzspv_verify (x, offset, len, mpzspm));
ASSERT_ALWAYS(mpzspm->sp_num <= 1677721);
#ifdef TIMING_CRT
mpzspv_to_mpzv_time -= cputime ();
#endif
mpz_init (mt);
for (l = 0; l < len; l += MPZSPV_NORMALISE_STRIDE)
{
spv_size_t stride = MIN (MPZSPV_NORMALISE_STRIDE, len - l);
/* we apply the above theorem to mpzv[l]...mpzv[l+stride-1] at once */
for (k = 0; k < stride; k++)
{
f[k] = 0.5; /* this is performed len times */
mpz_set_ui (mpzv[k + l], 0);
}
for (i = 0; i < mpzspm->sp_num; i++)
{
/* this loop is performed len*sp_num/MPZSPV_NORMALISE_STRIDE times */
/* prime_recip = 1/p_i * (1+u)^2 wih |u| <= 2^(-24) where one
exponent is due to the sp -> float conversion, and one to the
division */
prime_recip = 1.0f / (float) spm[i]->sp; /* 1/p_i */
for (k = 0; k < stride; k++)
{
/* this loop is performed len*sp_num times */
/* crt3[i] = p_i/P mod p_i (q_i in the theorem) */
t = sp_mul (x[i][l + k + offset], mpzspm->crt3[i], spm[i]->sp,
spm[i]->mul_c);
/* crt1[i] = P / p_i mod modulus: we accumulate in mpzv[l + k]
the sum of P t_i/p_i = t_i (P/p_i) mod N.
If N has n limbs, crt1[i] has n limbs too,
thus mpzv[l+k] has about n limbs */
if (sizeof (sp_t) > sizeof (unsigned long))
{
mpz_set_sp (mt, t);
mpz_addmul (mpzv[l + k], mpzspm->crt1[i], mt);
}
else
mpz_addmul_ui (mpzv[l + k], mpzspm->crt1[i], t);
/* After the conversion from t to float and the multiplication,
the value of (float) t * prime_recip = t/p_i * (1+v)^4
where |v| <= 2^(-24). Since |t| < p_i, the absolute error
is bounded by (1+v^4)-1 <= 5*v. Thus the total error on f[k]
is bounded by 5*sp_num*2^(-24). Since we want this to be smaller
than 0.5, we need sp_num <= 2^23/5 thus sp_num <= 1677721.
This corresponds to a number of at most 15656374 digits on a
32-bit machine, and at most 31312749 digits on 64-bit. */
f[k] += (float) t * prime_recip;
}
}
/* crt2[i] = -i*P mod modulus */
for (k = 0; k < stride; k++)
mpz_add (mpzv[l + k], mpzv[l + k], mpzspm->crt2[(unsigned int) f[k]]);
}
mpz_clear (mt);
free (f);
#ifdef TIMING_CRT
mpzspv_to_mpzv_time += cputime ();
#endif
}
void
mpzspv_pwmul (mpzspv_t r, spv_size_t r_offset, mpzspv_t x, spv_size_t x_offset,
mpzspv_t y, spv_size_t y_offset, spv_size_t len, mpzspm_t mpzspm)
{
unsigned int i;
ASSERT (mpzspv_verify (r, r_offset + len, 0, mpzspm));
ASSERT (mpzspv_verify (x, x_offset, len, mpzspm));
ASSERT (mpzspv_verify (y, y_offset, len, mpzspm));
for (i = 0; i < mpzspm->sp_num; i++)
spv_pwmul (r[i] + r_offset, x[i] + x_offset, y[i] + y_offset,
len, mpzspm->spm[i]->sp, mpzspm->spm[i]->mul_c);
}
/* Normalise the vector x[][offset..offset+len-1] of RNS residues modulo the
* input modulus N.
*
* Reference: Bernstein & Sorenson: Explicit CRT mod m mod p_j, Theorem 4.1.
*
* time: O(len * sp_num^2)
* memory: MPZSPV_NORMALISE_STRIDE mpzspv coeffs
* 6 * MPZSPV_NORMALISE_STRIDE sp's
* MPZSPV_NORMALISE_STRIDE floats
* For a subquadratic version: look at Section 23 of
* http://cr.yp.to/papers.html#multapps
*/
void
mpzspv_normalise (mpzspv_t x, spv_size_t offset, spv_size_t len,
mpzspm_t mpzspm)
{
unsigned int i, j, sp_num = mpzspm->sp_num;
spv_size_t k, l;
sp_t v;
spv_t s, d, w;
spm_t *spm = mpzspm->spm;
float prime_recip;
float *f;
mpzspv_t t;
#ifdef TIMING_CRT
mpzspv_normalise_time -= cputime ();
#endif
ASSERT (mpzspv_verify (x, offset, len, mpzspm));
f = (float *) malloc (MPZSPV_NORMALISE_STRIDE * sizeof (float));
s = (spv_t) malloc (3 * MPZSPV_NORMALISE_STRIDE * sizeof (sp_t));
d = (spv_t) malloc (3 * MPZSPV_NORMALISE_STRIDE * sizeof (sp_t));
if (f == NULL || s == NULL || d == NULL)
{
fprintf (stderr, "Cannot allocate memory in mpzspv_normalise\n");
exit (1);
}
t = mpzspv_init (MPZSPV_NORMALISE_STRIDE, mpzspm);
memset (s, 0, 3 * MPZSPV_NORMALISE_STRIDE * sizeof (sp_t));
for (l = 0; l < len; l += MPZSPV_NORMALISE_STRIDE)
{
spv_size_t stride = MIN (MPZSPV_NORMALISE_STRIDE, len - l);
/* FIXME: use B&S Theorem 2.2 */
for (k = 0; k < stride; k++)
f[k] = 0.5; /* this is executed len times */
for (i = 0; i < sp_num; i++)
{
/* this loop is performed len*sp_num/MPZSPV_NORMALISE_STRIDE times */
prime_recip = 1.0f / (float) spm[i]->sp;
for (k = 0; k < stride; k++)
{
/* this is executed len*sp_num times,
crt3[i] = p_i/P mod p_i (q_i in Theorem 3.1) */
x[i][l + k + offset] = sp_mul (x[i][l + k + offset],
mpzspm->crt3[i], spm[i]->sp, spm[i]->mul_c);
/* now x[i] is t_i in Theorem 3.1 */
f[k] += (float) x[i][l + k + offset] * prime_recip;
}
}
for (i = 0; i < sp_num; i++)
{
for (k = 0; k < stride; k++)
{
/* this is executed len*sp_num times */
/* crt5[i] = (-P mod modulus) mod p_i */
umul_ppmm (d[3 * k + 1], d[3 * k], mpzspm->crt5[i], (sp_t) f[k]);
/* {d+3*k,2} = ((-P mod modulus) mod p_i) * round(sum(t_j/p_j)),
this accounts for the right term in Theorem 4.1 */
d[3 * k + 2] = 0;
}
for (j = 0; j < sp_num; j++)
{
/* this is executed len*sp_num^2/MPZSPV_NORMALISE_STRIDE times */
w = x[j] + offset;
/* crt4[i][j] = ((P / p[i]) mod modulus) mod p[j] */
v = mpzspm->crt4[i][j];
for (k = 0; k < stride; k++)
/* this is executed len*sp_num^2 times, and computes the left
term in Theorem 4.1 */
umul_ppmm (s[3 * k + 1], s[3 * k], w[k + l], v);
/* This mpn_add_n adds in parallel all "stride" contributions,
and accounts for about a third of the function's runtime.
Since d has size O(stride), the cumulated complexity of this
call is O(len*sp_num^2) */
mpn_add_n (d, d, s, 3 * stride);
}
/* we finally reduce the contribution modulo each p_i */
for (k = 0; k < stride; k++)
t[i][k] = mpn_mod_1 (d + 3 * k, 3, spm[i]->sp);
}
mpzspv_set (x, l + offset, t, 0, stride, mpzspm);
}
mpzspv_clear (t, mpzspm);
free (s);
free (d);
free (f);
#ifdef TIMING_CRT
mpzspv_normalise_time += cputime ();
#endif
}
void
mpzspv_to_ntt (mpzspv_t x, spv_size_t offset, spv_size_t len,
spv_size_t ntt_size, int monic, mpzspm_t mpzspm)
{
unsigned int i;
spv_size_t j, log2_ntt_size;
spm_t spm;
spv_t spv;
ASSERT (mpzspv_verify (x, offset, len, mpzspm));
ASSERT (mpzspv_verify (x, offset + ntt_size, 0, mpzspm));
log2_ntt_size = ceil_log_2 (ntt_size);
for (i = 0; i < mpzspm->sp_num; i++)
{
spm = mpzspm->spm[i];
spv = x[i] + offset;
if (ntt_size < len)
{
for (j = ntt_size; j < len; j += ntt_size)
spv_add (spv, spv, spv + j, ntt_size, spm->sp);
}
if (ntt_size > len)
spv_set_zero (spv + len, ntt_size - len);
if (monic)
spv[len % ntt_size] = sp_add (spv[len % ntt_size], 1, spm->sp);
spv_ntt_gfp_dif (spv, log2_ntt_size, spm);
}
}
void mpzspv_from_ntt (mpzspv_t x, spv_size_t offset, spv_size_t ntt_size,
spv_size_t monic_pos, mpzspm_t mpzspm)
{
unsigned int i;
spv_size_t log2_ntt_size;
spm_t spm;
spv_t spv;
ASSERT (mpzspv_verify (x, offset, ntt_size, mpzspm));
log2_ntt_size = ceil_log_2 (ntt_size);
for (i = 0; i < mpzspm->sp_num; i++)
{
spm = mpzspm->spm[i];
spv = x[i] + offset;
spv_ntt_gfp_dit (spv, log2_ntt_size, spm);
/* spm->sp - (spm->sp - 1) / ntt_size is the inverse of ntt_size */
spv_mul_sp (spv, spv, spm->sp - (spm->sp - 1) / ntt_size,
ntt_size, spm->sp, spm->mul_c);
if (monic_pos)
spv[monic_pos % ntt_size] = sp_sub (spv[monic_pos % ntt_size],
1, spm->sp);
}
}
void
mpzspv_random (mpzspv_t x, spv_size_t offset, spv_size_t len, mpzspm_t mpzspm)
{
unsigned int i;
ASSERT (mpzspv_verify (x, offset, len, mpzspm));
for (i = 0; i < mpzspm->sp_num; i++)
spv_random (x[i] + offset, len, mpzspm->spm[i]->sp);
}
/* Do multiplication via NTT. Depending on the value of "steps", does
in-place forward transform of x, in-place forward transform of y,
pair-wise multiplication of x by y to r, in-place inverse transform of r.
Contrary to calling these three operations separately, this function does
all three steps on a small-prime vector at a time, resulting in slightly
better cache efficiency (also in preparation to storing NTT vectors on disk
and reading them in for the multiplication). */
void
mpzspv_mul_ntt (mpzspv_t r, const spv_size_t offsetr,
mpzspv_t x, const spv_size_t offsetx, const spv_size_t lenx,
mpzspv_t y, const spv_size_t offsety, const spv_size_t leny,
const spv_size_t ntt_size, const int monic, const spv_size_t monic_pos,
mpzspm_t mpzspm, const int steps)
{
spv_size_t log2_ntt_size;
int i;
ASSERT (mpzspv_verify (x, offsetx, lenx, mpzspm));
ASSERT (mpzspv_verify (y, offsety, leny, mpzspm));
ASSERT (mpzspv_verify (x, offsetx + ntt_size, 0, mpzspm));
ASSERT (mpzspv_verify (y, offsety + ntt_size, 0, mpzspm));
ASSERT (mpzspv_verify (r, offsetr + ntt_size, 0, mpzspm));
log2_ntt_size = ceil_log_2 (ntt_size);
/* Need parallelization at higher level (e.g., handling a branch of the
product tree in one thread) to make this worthwhile for ECM */
#define MPZSPV_MUL_NTT_OPENMP 0
#if defined(_OPENMP) && MPZSPV_MUL_NTT_OPENMP
#pragma omp parallel if (ntt_size > 16384)
{
#pragma omp for
#endif
for (i = 0; i < (int) mpzspm->sp_num; i++)
{
spv_size_t j;
spm_t spm = mpzspm->spm[i];
spv_t spvr = r[i] + offsetr;
spv_t spvx = x[i] + offsetx;
spv_t spvy = y[i] + offsety;
if ((steps & NTT_MUL_STEP_FFT1) != 0) {
if (ntt_size < lenx)
{
for (j = ntt_size; j < lenx; j += ntt_size)
spv_add (spvx, spvx, spvx + j, ntt_size, spm->sp);
}
if (ntt_size > lenx)
spv_set_zero (spvx + lenx, ntt_size - lenx);
if (monic)
spvx[lenx % ntt_size] = sp_add (spvx[lenx % ntt_size], 1, spm->sp);
spv_ntt_gfp_dif (spvx, log2_ntt_size, spm);
}
if ((steps & NTT_MUL_STEP_FFT2) != 0) {
if (ntt_size < leny)
{
for (j = ntt_size; j < leny; j += ntt_size)
spv_add (spvy, spvy, spvy + j, ntt_size, spm->sp);
}
if (ntt_size > leny)
spv_set_zero (spvy + leny, ntt_size - leny);
if (monic)
spvy[leny % ntt_size] = sp_add (spvy[leny % ntt_size], 1, spm->sp);
spv_ntt_gfp_dif (spvy, log2_ntt_size, spm);
}
if ((steps & NTT_MUL_STEP_MUL) != 0) {
spv_pwmul (spvr, spvx, spvy, ntt_size, spm->sp, spm->mul_c);
}
if ((steps & NTT_MUL_STEP_IFFT) != 0) {
ASSERT (sizeof (mp_limb_t) >= sizeof (sp_t));
spv_ntt_gfp_dit (spvr, log2_ntt_size, spm);
/* spm->sp - (spm->sp - 1) / ntt_size is the inverse of ntt_size */
spv_mul_sp (spvr, spvr, spm->sp - (spm->sp - 1) / ntt_size,
ntt_size, spm->sp, spm->mul_c);
if (monic_pos)
spvr[monic_pos % ntt_size] = sp_sub (spvr[monic_pos % ntt_size],
1, spm->sp);
}
}
#if defined(_OPENMP) && MPZSPV_MUL_NTT_OPENMP
}
#endif
}
/* Computes a DCT-I of the length dctlen. Input is the spvlen coefficients
in spv. tmp is temp space and must have space for 2*dctlen-2 sp_t's */
void
mpzspv_to_dct1 (mpzspv_t dct, const mpzspv_t spv, const spv_size_t spvlen,
const spv_size_t dctlen, mpzspv_t tmp,
const mpzspm_t mpzspm)
{
const spv_size_t l = 2 * (dctlen - 1); /* Length for the DFT */
const spv_size_t log2_l = ceil_log_2 (l);
int j;
#ifdef _OPENMP
#pragma omp parallel private(j)
{
#pragma omp for
#endif
for (j = 0; j < (int) mpzspm->sp_num; j++)
{
const spm_t spm = mpzspm->spm[j];
spv_size_t i;
/* Make a symmetric copy of spv in tmp. I.e. with spv = [3, 2, 1],
spvlen = 3, dctlen = 5 (hence l = 8), we want
tmp = [3, 2, 1, 0, 0, 0, 1, 2] */
spv_set (tmp[j], spv[j], spvlen);
spv_rev (tmp[j] + l - spvlen + 1, spv[j] + 1, spvlen - 1);
/* Now we have [3, 2, 1, ?, ?, ?, 1, 2]. Fill the ?'s with zeros. */
spv_set_sp (tmp[j] + spvlen, (sp_t) 0, l - 2 * spvlen + 1);
#if 0
printf ("mpzspv_to_dct1: tmp[%d] = [", j);
for (i = 0; i < l; i++)
printf ("%lu, ", tmp[j][i]);
printf ("]\n");
#endif
spv_ntt_gfp_dif (tmp[j], log2_l, spm);
#if 0
printf ("mpzspv_to_dct1: tmp[%d] = [", j);
for (i = 0; i < l; i++)
printf ("%lu, ", tmp[j][i]);
printf ("]\n");
#endif
/* The forward transform is scrambled. We want elements [0 ... l/2]
of the unscrabled data, that is all the coefficients with the most
significant bit in the index (in log2(l) word size) unset, plus the
element at index l/2. By scrambling, these map to the elements with
even index, plus the element at index 1.
The elements with scrambled index 2*i are stored in h[i], the
element with scrambled index 1 is stored in h[params->l] */
#ifdef WANT_ASSERT
/* Test that the coefficients are symmetric (if they were unscrambled)
and that our algorithm for finding identical coefficients in the
scrambled data works */
{
spv_size_t m = 5;
for (i = 2; i < l; i += 2L)
{
/* This works, but why? */
if (i + i / 2L > m)
m = 2L * m + 1L;
ASSERT (tmp[j][i] == tmp[j][m - i]);
#if 0
printf ("mpzspv_to_dct1: DFT[%lu] == DFT[%lu]\n", i, m - i);
#endif
}
}
#endif
/* Copy coefficients to dct buffer */
for (i = 0; i < l / 2; i++)
dct[j][i] = tmp[j][i * 2];
dct[j][l / 2] = tmp[j][1];
}
#ifdef _OPENMP
}
#endif
}
/* Multiply the polynomial in "dft" by the RLP in "dct", where "dft"
contains the polynomial coefficients (not FFT'd yet) and "dct"
contains the DCT-I coefficients of the RLP. The latter are
assumed to be in the layout produced by mpzspv_to_dct1().
Output are the coefficients of the product polynomial, stored in dft.
The "steps" parameter controls which steps are computed:
NTT_MUL_STEP_FFT1: do forward transform
NTT_MUL_STEP_MUL: do point-wise product
NTT_MUL_STEP_IFFT: do inverse transform
*/
void
mpzspv_mul_by_dct (mpzspv_t dft, const mpzspv_t dct, const spv_size_t len,
const mpzspm_t mpzspm, const int steps)
{
int j;
spv_size_t log2_len = ceil_log_2 (len);
#ifdef _OPENMP
#pragma omp parallel private(j)
{
#pragma omp for
#endif
for (j = 0; j < (int) (mpzspm->sp_num); j++)
{
const spm_t spm = mpzspm->spm[j];
const spv_t spv = dft[j];
unsigned long i, m;
/* Forward DFT of dft[j] */
if ((steps & NTT_MUL_STEP_FFT1) != 0)
spv_ntt_gfp_dif (spv, log2_len, spm);
/* Point-wise product */
if ((steps & NTT_MUL_STEP_MUL) != 0)
{
m = 5UL;
spv[0] = sp_mul (spv[0], dct[j][0], spm->sp, spm->mul_c);
spv[1] = sp_mul (spv[1], dct[j][len / 2UL], spm->sp, spm->mul_c);
for (i = 2UL; i < len; i += 2UL)
{
/* This works, but why? */
if (i + i / 2UL > m)
m = 2UL * m + 1;
spv[i] = sp_mul (spv[i], dct[j][i / 2UL], spm->sp, spm->mul_c);
spv[m - i] = sp_mul (spv[m - i], dct[j][i / 2UL], spm->sp,
spm->mul_c);
}
}
/* Inverse transform of dft[j] */
if ((steps & NTT_MUL_STEP_IFFT) != 0)
{
spv_ntt_gfp_dit (spv, log2_len, spm);
/* Divide by transform length. FIXME: scale the DCT of h instead */
spv_mul_sp (spv, spv, spm->sp - (spm->sp - 1) / len, len,
spm->sp, spm->mul_c);
}
}
#ifdef _OPENMP
}
#endif
}
void
mpzspv_sqr_reciprocal (mpzspv_t dft, const spv_size_t n,
const mpzspm_t mpzspm)
{
const spv_size_t log2_n = ceil_log_2 (n);
const spv_size_t len = ((spv_size_t) 2) << log2_n;
const spv_size_t log2_len = 1 + log2_n;
int j;
ASSERT(mpzspm->max_ntt_size % 3UL == 0UL);
ASSERT(len % 3UL != 0UL);
ASSERT(mpzspm->max_ntt_size % len == 0UL);
#ifdef _OPENMP
#pragma omp parallel
{
#pragma omp for
#endif
for (j = 0; j < (int) (mpzspm->sp_num); j++)
{
const spm_t spm = mpzspm->spm[j];
const spv_t spv = dft[j];
sp_t w1, w2, invlen;
const sp_t sp = spm->sp, mul_c = spm->mul_c;
spv_size_t i;
/* Zero out NTT elements [n .. len-n] */
spv_set_sp (spv + n, (sp_t) 0, len - 2*n + 1);
#ifdef TRACE_ntt_sqr_reciprocal
if (j == 0)
{
printf ("ntt_sqr_reciprocal: NTT vector mod %lu\n", sp);
ntt_print_vec ("ntt_sqr_reciprocal: before weighting:", spv, len);
}
#endif
/* Compute the root for the weight signal, a 3rd primitive root
of unity */
w1 = sp_pow (spm->prim_root, mpzspm->max_ntt_size / 3UL, sp,
mul_c);
/* Compute iw= 1/w */
w2 = sp_pow (spm->inv_prim_root, mpzspm->max_ntt_size / 3UL, sp,
mul_c);
#ifdef TRACE_ntt_sqr_reciprocal
if (j == 0)
printf ("w1 = %lu ,w2 = %lu\n", w1, w2);
#endif
ASSERT(sp_mul(w1, w2, sp, mul_c) == (sp_t) 1);
ASSERT(w1 != (sp_t) 1);
ASSERT(sp_pow (w1, 3UL, sp, mul_c) == (sp_t) 1);
ASSERT(w2 != (sp_t) 1);
ASSERT(sp_pow (w2, 3UL, sp, mul_c) == (sp_t) 1);
/* Fill NTT elements spv[len-n+1 .. len-1] with coefficients and
apply weight signal to spv[i] and spv[l-i] for 0 <= i < n
Use the fact that w^i + w^{-i} = -1 if i != 0 (mod 3). */
for (i = 0; i + 2 < n; i += 3)
{
sp_t t, u;
if (i > 0)
spv[len - i] = spv[i];
t = spv[i + 1];
u = sp_mul (t, w1, sp, mul_c);
spv[i + 1] = u;
spv[len - i - 1] = sp_neg (sp_add (t, u, sp), sp);
t = spv[i + 2];
u = sp_mul (t, w2, sp, mul_c);
spv[i + 2] = u;
spv[len - i - 2] = sp_neg (sp_add (t, u, sp), sp);
}
if (i < n && i > 0)
{
spv[len - i] = spv[i];
}