forked from DataScienceSpecialization/courses
-
Notifications
You must be signed in to change notification settings - Fork 0
/
index.html
211 lines (188 loc) · 8.53 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
<!DOCTYPE html>
<html>
<head>
<title>Historical side note, Regression to Mediocrity</title>
<meta charset="utf-8">
<meta name="description" content="Historical side note, Regression to Mediocrity">
<meta name="author" content="Brian Caffo, Jeff Leek, Roger Peng PhD">
<meta name="generator" content="slidify" />
<meta name="apple-mobile-web-app-capable" content="yes">
<meta http-equiv="X-UA-Compatible" content="chrome=1">
<link rel="stylesheet" href="../../libraries/frameworks/io2012/css/default.css" media="all" >
<link rel="stylesheet" href="../../libraries/frameworks/io2012/phone.css"
media="only screen and (max-device-width: 480px)" >
<link rel="stylesheet" href="../../libraries/frameworks/io2012/css/slidify.css" >
<link rel="stylesheet" href="../../libraries/highlighters/highlight.js/css/tomorrow.css" />
<base target="_blank"> <!-- This amazingness opens all links in a new tab. -->
<script data-main="../../libraries/frameworks/io2012/js/slides"
src="../../libraries/frameworks/io2012/js/require-1.0.8.min.js">
</script>
<link rel="stylesheet" href = "../../assets/css/custom.css">
<link rel="stylesheet" href = "../../assets/css/custom.css.BACKUP.546.css">
<link rel="stylesheet" href = "../../assets/css/custom.css.BASE.546.css">
<link rel="stylesheet" href = "../../assets/css/custom.css.LOCAL.546.css">
<link rel="stylesheet" href = "../../assets/css/custom.css.orig">
<link rel="stylesheet" href = "../../assets/css/custom.css.REMOTE.546.css">
<link rel="stylesheet" href = "../../assets/css/ribbons.css">
</head>
<body style="opacity: 0">
<slides class="layout-widescreen">
<!-- LOGO SLIDE -->
<!-- END LOGO SLIDE -->
<!-- TITLE SLIDE -->
<!-- Should I move this to a Local Layout File? -->
<slide class="title-slide segue nobackground">
<aside class="gdbar">
<img src="../../assets/img/bloomberg_shield.png">
</aside>
<hgroup class="auto-fadein">
<h1>Historical side note, Regression to Mediocrity</h1>
<h2>Regression to the mean</h2>
<p>Brian Caffo, Jeff Leek, Roger Peng PhD<br/>Johns Hopkins Bloomberg School of Public Health</p>
</hgroup>
</slide>
<!-- SLIDES -->
<slide class="" id="slide-1" style="background:;">
<hgroup>
<h2>A historically famous idea, Regression to the Mean</h2>
</hgroup>
<article>
<ul>
<li>Why is it that the children of tall parents tend to be tall, but not as tall as their parents? </li>
<li>Why do children of short parents tend to be short, but not as short as their parents?</li>
<li>Why do parents of very short children, tend to be short, but not a short as their child? And the same with parents of very tall children?</li>
<li>Why do the best performing athletes this year tend to do a little worse the following?</li>
</ul>
</article>
<!-- Presenter Notes -->
</slide>
<slide class="" id="slide-2" style="background:;">
<hgroup>
<h2>Regression to the mean</h2>
</hgroup>
<article>
<ul>
<li>These phenomena are all examples of so-called regression to the mean</li>
<li>Invented by Francis Galton in the paper "Regression towvards mediocrity in hereditary stature" The Journal of the Anthropological Institute of Great Britain and Ireland , Vol. 15, (1886).</li>
<li>Think of it this way, imagine if you simulated pairs of random normals
<ul>
<li>The largest first ones would be the largest by chance, and the probability that there are smaller for the second simulation is high.</li>
<li>In other words \(P(Y < x | X = x)\) gets bigger as \(x\) heads into the very large values.</li>
<li>Similarly \(P(Y > x | X = x)\) gets bigger as \(x\) heads to very small values.</li>
</ul></li>
<li>Think of the regression line as the intrisic part.
<ul>
<li>Unless \(Cor(Y, X) = 1\) the intrinsic part isn't perfect</li>
</ul></li>
</ul>
</article>
<!-- Presenter Notes -->
</slide>
<slide class="" id="slide-3" style="background:;">
<hgroup>
<h2>Regression to the mean</h2>
</hgroup>
<article>
<ul>
<li>Suppose that we normalize \(X\) (child's height) and \(Y\) (parent's height) so that they both have mean 0 and variance 1. </li>
<li>Then, recall, our regression line passes through \((0, 0)\) (the mean of the X and Y).</li>
<li>If the slope of the regression line is \(Cor(Y,X)\), regardless of which variable is the outcome (recall, both standard deviations are 1).</li>
<li>Notice if \(X\) is the outcome and you create a plot where \(X\) is the horizontal axis, the slope of the least squares line that you plot is \(1/Cor(Y, X)\). </li>
</ul>
</article>
<!-- Presenter Notes -->
</slide>
<slide class="" id="slide-4" style="background:;">
<hgroup>
<h2>Normalizing the data and setting plotting parameters</h2>
</hgroup>
<article>
<pre><code class="r">library(UsingR)
data(father.son)
y <- (father.son$sheight - mean(father.son$sheight)) / sd(father.son$sheight)
x <- (father.son$fheight - mean(father.son$fheight)) / sd(father.son$fheight)
rho <- cor(x, y)
myPlot <- function(x, y) {
plot(x, y,
xlab = "Father's height, normalized",
ylab = "Son's height, normalized",
xlim = c(-3, 3), ylim = c(-3, 3),
bg = "lightblue", col = "black", cex = 1.1, pch = 21,
frame = FALSE)
}
</code></pre>
</article>
<!-- Presenter Notes -->
</slide>
<slide class="" id="slide-5" style="background:;">
<hgroup>
<h2>Plot the data, code</h2>
</hgroup>
<article>
<pre><code>myPlot(x, y)
abline(0, 1) # if there were perfect correlation
abline(0, rho, lwd = 2) # father predicts son
abline(0, 1 / rho, lwd = 2) # son predicts father, son on vertical axis
abline(h = 0); abline(v = 0) # reference lines for no relathionship
</code></pre>
</article>
<!-- Presenter Notes -->
</slide>
<slide class="" id="slide-6" style="background:;">
<hgroup>
<h2>Plot the data, results</h2>
</hgroup>
<article>
<div class="rimage center"><img src="fig/unnamed-chunk-2.png" title="plot of chunk unnamed-chunk-2" alt="plot of chunk unnamed-chunk-2" class="plot" /></div>
</article>
<!-- Presenter Notes -->
</slide>
<slide class="" id="slide-7" style="background:;">
<hgroup>
<h2>Discussion</h2>
</hgroup>
<article>
<ul>
<li>If you had to predict a son's normalized height, it would be
\(Cor(Y, X) * X_i\) </li>
<li>If you had to predict a father's normalized height, it would be
\(Cor(Y, X) * Y_i\)</li>
<li>Multiplication by this correlation shrinks toward 0 (regression toward the mean)</li>
<li>If the correlation is 1 there is no regression to the mean (if father's height perfectly determine's child's height and vice versa)</li>
<li>Note, regression to the mean has been thought about quite a bit and generalized </li>
</ul>
</article>
<!-- Presenter Notes -->
</slide>
<slide class="backdrop"></slide>
</slides>
<!--[if IE]>
<script
src="http://ajax.googleapis.com/ajax/libs/chrome-frame/1/CFInstall.min.js">
</script>
<script>CFInstall.check({mode: 'overlay'});</script>
<![endif]-->
</body>
<!-- Grab CDN jQuery, fall back to local if offline -->
<script src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.7.min.js"></script>
<script>window.jQuery || document.write('<script src="../../libraries/widgets/quiz/js/jquery-1.7.min.js"><\/script>')</script>
<!-- Load Javascripts for Widgets -->
<!-- MathJax: Fall back to local if CDN offline but local image fonts are not supported (saves >100MB) -->
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
tex2jax: {
inlineMath: [['$','$'], ['\\(','\\)']],
processEscapes: true
}
});
</script>
<script type="text/javascript" src="http://cdn.mathjax.org/mathjax/2.0-latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
<!-- <script src="https://c328740.ssl.cf1.rackcdn.com/mathjax/2.0-latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script> -->
<script>window.MathJax || document.write('<script type="text/x-mathjax-config">MathJax.Hub.Config({"HTML-CSS":{imageFont:null}});<\/script><script src="../../libraries/widgets/mathjax/MathJax.js?config=TeX-AMS-MML_HTMLorMML"><\/script>')
</script>
<!-- LOAD HIGHLIGHTER JS FILES -->
<script src="../../libraries/highlighters/highlight.js/highlight.pack.js"></script>
<script>hljs.initHighlightingOnLoad();</script>
<!-- DONE LOADING HIGHLIGHTER JS FILES -->
</html>