forked from zeusees/License-Plate-Detector
-
Notifications
You must be signed in to change notification settings - Fork 0
/
detect_plate.py
177 lines (141 loc) · 6.28 KB
/
detect_plate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
# -*- coding: UTF-8 -*-
import argparse
import time
from pathlib import Path
import cv2
import torch
import torch.backends.cudnn as cudnn
from numpy import random
import copy
from models.experimental import attempt_load
from utils.datasets import letterbox
from utils.general import check_img_size, non_max_suppression_plate, apply_classifier, scale_coords, xyxy2xywh, \
strip_optimizer, set_logging, increment_path
from utils.plots import plot_one_box
from utils.torch_utils import select_device, load_classifier, time_synchronized
import os
cv2.namedWindow("img", 0);
cv2.resizeWindow("img", 1280,720);
def load_model(weights, device):
model = attempt_load(weights, map_location=device) # load FP32 model
return model
def scale_coords_landmarks(img1_shape, coords, img0_shape, ratio_pad=None):
# Rescale coords (xyxy) from img1_shape to img0_shape
if ratio_pad is None: # calculate from img0_shape
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
else:
gain = ratio_pad[0][0]
pad = ratio_pad[1]
coords[:, [0, 2, 4, 6]] -= pad[0] # x padding
coords[:, [1, 3, 5, 7]] -= pad[1] # y padding
coords[:, :8] /= gain
#clip_coords(coords, img0_shape)
coords[:, 0].clamp_(0, img0_shape[1]) # x1
coords[:, 1].clamp_(0, img0_shape[0]) # y1
coords[:, 2].clamp_(0, img0_shape[1]) # x2
coords[:, 3].clamp_(0, img0_shape[0]) # y2
coords[:, 4].clamp_(0, img0_shape[1]) # x3
coords[:, 5].clamp_(0, img0_shape[0]) # y3
coords[:, 6].clamp_(0, img0_shape[1]) # x4
coords[:, 7].clamp_(0, img0_shape[0]) # y4
return coords
def show_results(img, xywh, conf, landmarks, class_num):
h,w,c = img.shape
#tl = 1 or round(0.002 * (h + w) / 2) + 1 # line/font thickness
x1 = int(xywh[0] * w - 0.5 * xywh[2] * w)
y1 = int(xywh[1] * h - 0.5 * xywh[3] * h)
x2 = int(xywh[0] * w + 0.5 * xywh[2] * w)
y2 = int(xywh[1] * h + 0.5 * xywh[3] * h)
cv2.rectangle(img, (x1,y1), (x2, y2), (0,255,0), thickness=3, lineType=cv2.LINE_AA)
clors = [(255,0,0),(0,255,0),(0,0,255),(255,255,0),(0,255,255)]
for i in range(4):
point_x = int(landmarks[2 * i] * w)
point_y = int(landmarks[2 * i + 1] * h)
cv2.circle(img, (point_x, point_y), 3, clors[i], -1)
label = str(conf)[:5]
return img
def detect_one(model, image_path, device):
# Load model
img_size = 800
conf_thres = 0.3
iou_thres = 0.5
orgimg = cv2.imread(image_path) # BGR
sp = orgimg.shape
h = sp[0]
w = sp[1]
#img_size = h
print(w,h)
img0 = copy.deepcopy(orgimg)
assert orgimg is not None, 'Image Not Found ' + image_path
h0, w0 = orgimg.shape[:2] # orig hw
r = img_size / max(h0, w0) # resize image to img_size
if r != 1: # always resize down, only resize up if training with augmentation
interp = cv2.INTER_AREA if r < 1 else cv2.INTER_LINEAR
img0 = cv2.resize(img0, (int(w0 * r), int(h0 * r)), interpolation=interp)
imgsz = check_img_size(img_size, s=model.stride.max()) # check img_size
img = letterbox(img0, new_shape=imgsz)[0]
# Convert
img = img[:, :, ::-1].transpose(2, 0, 1).copy() # BGR to RGB, to 3x416x416
# Run inference
t0 = time.time()
img = torch.from_numpy(img).to(device)
img = img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
# Inference
t1 = time_synchronized()
pred = model(img)[0]
# Apply NMS
pred = non_max_suppression_plate(pred, conf_thres, iou_thres)
print('img.shape: ', img.shape)
print('orgimg.shape: ', orgimg.shape)
# Process detections
for i, det in enumerate(pred): # detections per image
gn = torch.tensor(orgimg.shape)[[1, 0, 1, 0]].to(device) # normalization gain whwh
gn_lks = torch.tensor(orgimg.shape)[[1, 0, 1, 0, 1, 0, 1, 0]].to(device) # normalization gain landmarks
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], orgimg.shape).round()
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
det[:, 5:13] = scale_coords_landmarks(img.shape[2:], det[:, 5:13], orgimg.shape).round()
for j in range(det.size()[0]):
xywh = (xyxy2xywh(det[j, :4].view(1, 4)) / gn).view(-1).tolist()
conf = det[j, 4].cpu().numpy()
landmarks = (det[j, 5:13].view(1, 8) / gn_lks).view(-1).tolist()
class_num = det[j, 13].cpu().numpy()
orgimg = show_results(orgimg, xywh, conf, landmarks, class_num)
cv2.imshow("img",orgimg)
cv2.waitKey(0)
def show_files(path, all_files):
# 首先遍历当前目录所有文件及文件夹
file_list = os.listdir(path)
# 准备循环判断每个元素是否是文件夹还是文件,是文件的话,把名称传入list,是文件夹的话,递归
for file in file_list:
# 利用os.path.join()方法取得路径全名,并存入cur_path变量,否则每次只能遍历一层目录
cur_path = os.path.join(path, file)
# 判断是否是文件夹
if os.path.isdir(cur_path):
show_files(cur_path, all_files)
else:
if not cur_path.endswith(('jpg')):
continue
else:
all_files.append(cur_path )
return all_files
f = show_files("/home/zeusee/plate/", [])
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--weights', nargs='+', type=str, default='runs/train/exp/weights/last.pt', help='model.pt path(s)')
parser.add_argument('--image', type=str, default='data/images/test.jpg', help='source') # file/folder, 0 for webcam
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
opt = parser.parse_args()
print(opt)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = load_model(opt.weights, device)
for filename in f:
print(filename)
detect_one(model, filename, device)