forked from PRML/PRMLT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnvi.m
33 lines (28 loc) · 796 Bytes
/
nvi.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
function z = nvi(x, y)
% Compute normalized variation information z=(1-I(x,y)/H(x,y)) of two discrete variables x and y.
% Input:
% x, y: two integer vector of the same length
% Output:
% z: normalized variation information z=(1-I(x,y)/H(x,y))
% Written by Mo Chen ([email protected]).
assert(numel(x) == numel(y));
n = numel(x);
x = reshape(x,1,n);
y = reshape(y,1,n);
l = min(min(x),min(y));
x = x-l+1;
y = y-l+1;
k = max(max(x),max(y));
idx = 1:n;
Mx = sparse(idx,x,1,n,k,n);
My = sparse(idx,y,1,n,k,n);
Pxy = nonzeros(Mx'*My/n); %joint distribution of x and y
Hxy = -dot(Pxy,log2(Pxy));
Px = nonzeros(mean(Mx,1));
Py = nonzeros(mean(My,1));
% entropy of Py and Px
Hx = -dot(Px,log2(Px));
Hy = -dot(Py,log2(Py));
% nvi
z = 2-(Hx+Hy)/Hxy;
z = max(0,z);