牛客OJ:二叉树的深度
九度OJ:http://ac.jobdu.com/problem.php?pid=1350
GitHub代码: 039-二叉树的深度
CSDN题解:剑指Offer--039-二叉树的深度
| 牛客OJ | 九度OJ | CSDN题解 | GitHub代码 | | ------------- |:-------------:| -----:| |039-二叉树的深度 | 1350-二叉树的深度 | 剑指Offer--039-二叉树的深度 | 039-二叉树的深度 |
,
您也可以选择回到目录-剑指Offer--题集目录索引
题目描述
输入一棵二叉树,求该树的深度。
从根结点到叶结点依次经过的结点(含根、叶结点)形成树的一条路径,最长路径的长度为树的深度。
对二叉树进行层次遍历,维护一个层数计数器,每次进入一层就增加1,从而得到二叉树的层数。 当然如果使用递归的话,思路就更简单了,返回左右子树中深度最大的那个
层次遍历的代码,我们前面已经将了很多了,这里就不再啰嗦了,需要的统计可以参见我的另外几篇博客 二叉树的遍历详解(前序中序后序层次-递归和非递归) 剑指Offer--023-从上往下打印二叉树(层次遍历二叉树)
但是递归的思路稍有不同,因此要返回层数,那么我们就返回左右子树中深度最大的那个
class Solution
{
public:
int TreeDepth(TreeNode* root)
{
return TreeDepth(root, 0);
}
/// 递归方法一
int TreeDepthRecursion(TreeNode *root)
{
if(root == NULL)
{
return 0;
}
else
{
int leftDepth = TreeDepthRecursion(root->left);
int rightDepth = TreeDepthRecursion(root->right);
return max(leftDepth, rightDepth) + 1;
}
}
/// 递归方法二
int TreeDepthRecursion(TreeNode *root, int depth)
{
if(root == NULL)
{
return depth;
}
else
{
int leftDepth = TreeDepthRecursion(root->left, depth + 1);
int rightDepth = TreeDepthRecursion(root->right, depth + 1);
return max(leftDepth, rightDepth);
}
}
};
然后还有其他非递归的方法,最后完整的代码如下
#include <iostream>
#include <deque>
#include <queue>
#include <vector>
using namespace std;
// 调试开关
#define __tmain main
#ifdef __tmain
#define debug cout
#else
#define debug 0 && cout
#endif // __tmain
#ifdef __tmain
struct TreeNode
{
int val;
struct TreeNode *left;
struct TreeNode *right;
};
#endif // __tmain
class Solution
{
public:
int TreeDepth(TreeNode* root)
{
return TreeDepthRecursion(root);
//return TreeDepthRecursion(root, 0);
//return LevelOrderDev(tree);
//return LevelOrderUseEnd(tree);
//return LevelOrderUseSize(tree);
//return LevelOrderUsePoint(tree);
}
int TreeDepthRecursion(TreeNode *root)
{
if(root == NULL)
{
return 0;
}
else
{
int leftDepth = TreeDepthRecursion(root->left);
int rightDepth = TreeDepthRecursion(root->right);
return max(leftDepth, rightDepth) + 1;
}
}
int TreeDepthRecursion(TreeNode *root, int depth)
{
if(root == NULL)
{
return depth;
}
else
{
int leftDepth = TreeDepthRecursion(root->left, depth + 1);
int rightDepth = TreeDepthRecursion(root->right, depth + 1);
return max(leftDepth, rightDepth);
}
}
int LevelOrderDev(TreeNode *root)
{
/// deque双端队列,
/// 支持迭代器,有push_back()方法,
/// 跟vector差不多,比vector多了个pop_front,push_front方法
int count = 0;
deque<TreeNode *> qFirst, qSecond;
qFirst.push_back(root);
while(qFirst.empty( ) != true)
{
while (qFirst.empty( ) != true)
{
TreeNode *temp = qFirst.front( );
qFirst.pop_front( );
cout << temp->val;
if (temp->left != NULL)
{
qSecond.push_back(temp->left);
}
if (temp->right != NULL)
{
qSecond.push_back(temp->right);
}
}
cout << endl;
count++;
qFirst.swap(qSecond);
}
return count;
}
int LevelOrderUsePoint(TreeNode *root)
{
vector<TreeNode*> vec;
vec.push_back(root);
int cur = 0;
int end = 1;
int count = 0;
while (cur < vec.size())
{
end = vec.size(); /// 新的一行访问开始,重新定位last于当前行最后一个节点的下一个位置
while (cur < end)
{
cout << vec[cur]->val; /// 访问节点
if (vec[cur]->left != NULL) /// 压入左节点
{
vec.push_back(vec[cur]->left);
}
if (vec[cur]->right != NULL) /// 压入右节点
{
vec.push_back(vec[cur]->right);
}
cur++;
}
cout << endl;
count++;
}
return count;
}
int LevelOrderUseSize(TreeNode *root)
{
int count = 0;
int parentSize = 1, childSize = 0;
TreeNode *temp = NULL;
queue<TreeNode *> q;
q.push(root);
while(q.empty( ) != true)
{
temp = q.front( );
cout <<temp->val;
q.pop( );
if (temp->left != NULL)
{
q.push(temp->left);
childSize++;
}
if (temp->right != NULL)
{
q.push(temp->right);
childSize++;
}
parentSize--;
if (parentSize == 0)
{
parentSize = childSize;
childSize = 0;
cout << endl;
count++;
}
}
return count;
}
int LevelOrderUseEnd(TreeNode *root)
{
int count = 0;
queue<TreeNode *> q;
q.push(root);
q.push(NULL);
while(q.empty( ) != true)
{
TreeNode* node = q.front();
q.pop();
if (node)
{
cout << node->val;
if (node->left != NULL)
{
q.push(node->left);
}
if (node->right != NULL)
{
q.push(node->right);
}
}
else if (q.empty( ) != true)
{
q.push(NULL);
cout << endl;
count++;
}
}
return count;
}
};
int __tmain( )
{
// 0
// 1 2
// 3
TreeNode tree[4];
tree[0].val = 0;
tree[0].left = &tree[1];
tree[0].right = &tree[2];
tree[1].val = 1;
tree[1].left = &tree[3];
tree[1].right = NULL;
tree[2].val = 2;
tree[2].left = NULL;
tree[2].right = NULL;
tree[3].val = 3;
tree[3].left = NULL;
tree[3].right = NULL;
Solution solu;
cout <<solu.TreeDepth(tree) <<endl;
cout <<solu.LevelOrderDev(tree) <<endl;
cout <<solu.LevelOrderUseEnd(tree) <<endl;
cout <<solu.LevelOrderUseSize(tree) <<endl;
cout <<solu.LevelOrderUsePoint(tree) <<endl;
return 0;
}