-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathwlssvm.py
207 lines (186 loc) · 6.7 KB
/
wlssvm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
# -*- coding: utf-8 -*-
"""
Created on Tue Jun 5 09:30:24 2018
@author: lj
"""
from numpy import *
def loadDataSet(filename):
'''导入数据
input: filename:文件名
'''
dataMat = []
labelMat = []
fr = open(filename)
for line in fr.readlines():
lineArr = line.strip().split('\t')
dataMat.append(float(lineArr[0]))
labelMat.append(float(lineArr[1]))
return mat(dataMat).T,mat(labelMat).T
def kernelTrans(X,A,kTup):
'''数据集中每一个数据向量与A的核函数值
input: X--特征数据集
A--输入向量
kTup--核函数参量定义
output: K--数据集中每一个数据向量与A的核函数值组成的矩阵
'''
X = mat(X)
m,n = shape(X)
K = mat(zeros((m,1)))
if kTup[0] == 'lin':
K = X * A.T
elif kTup[0] == 'rbf':
for j in range(m):
deltaRow = X[j] - A
K[j] = deltaRow * deltaRow.T
K = exp(K/(-1 * kTup[1] ** 2))
else: raise NameError('Houston We Have a Problem ,That Kernel is not recognized')
return K
class optStruct:
def __init__(self,dataMatIn,classLabels,C,kTup):
self.X = dataMatIn
self.labelMat = classLabels
self.C = C
self.m = shape(dataMatIn)[0]
self.alphas = mat(zeros((self.m,1)))
self.b = 0
self.K = mat(zeros((self.m,self.m))) #特征数据集合中向量两两核函数值组成的矩阵,[i,j]表示第i个向量与第j个向量的核函数值
for i in range(self.m):
self.K[:,i] = kernelTrans(self.X, self.X[i,:], kTup)
def leastSquares(dataMatIn,classLabels,C,kTup):
'''最小二乘法求解alpha序列
input:dataMatIn:特征数据集
classLabels:分类标签集
C:参数,(松弛变量,允许有些数据点可以处于分隔面的错误一侧)
kTup: 核函数类型和参数选择
output:b--w.T*x+b=y中的b
alphas:alphas序列
'''
##1.参数设置
oS = optStruct(dataMatIn,classLabels,C,kTup)
unit = mat(ones((oS.m,1))) #[1,1,...,1].T
I = eye(oS.m)
zero = mat(zeros((1,1)))
upmat = hstack((zero,unit.T))
downmat = hstack((unit,oS.K + I/float(C)))
##2.方程求解
completemat = vstack((upmat,downmat)) #lssvm中求解方程的左边矩阵
rightmat = vstack((zero,oS.labelMat)) # lssvm中求解方程的右边矩阵
b_alpha = completemat.I * rightmat
##3.导出偏置b和Lagrange乘子序列
oS.b = b_alpha[0,0]
for i in range(oS.m):
oS.alphas[i,0] = b_alpha[i+1,0]
e = oS.alphas/C
return oS.alphas,oS.b,e
def weights(e):
'''计算权重序列
input:e(mat):LSSVM误差矩阵
output:v(mat):权重矩阵
'''
##1.参数设置
c1 = 2.5
c2 = 3
m = shape(e)[0]
v = mat(zeros((m,1)))
v1 = eye(m)
q1 = int(m/4.0)
q3 = int((m*3.0)/4.0)
e1 = []
shang = mat(zeros((m,1)))
##2.误差序列从小到大排列
for i in range(m):
e1.append(e[i,0])
e1.sort()
##3.计算误差序列第三四分位与第一四分位的差
IQR = e1[q3] - e1[q1]
##4.计算s的值
s = IQR/(2 * 0.6745)
##5.计算每一个误差对应的权重
for j in range(m):
shang[j,0] = abs(e[j,0]/s)
for x in range(m):
if shang[x,0] <= c1:
v[x,0] = 1.0
if shang[x,0] > c1 and shang[x,0] <= c2:
v[x,0] = (c2 - shang[x,0])/(c2 - c1)
if shang[x,0] > c2:
v[x,0] = 0.0001
v1[x,x] = 1/float(v[x,0])
return v1
def weightsleastSquares(dataMatIn,classLabels,C,kTup,v1):
'''最小二乘法求解alpha序列
input:dataMatIn:特征数据集
classLabels:分类标签集
C:参数,(松弛变量,允许有些数据点可以处于分隔面的错误一侧)
kTup: 核函数类型和参数选择
output:b--w.T*x+b=y中的b
alphas:alphas序列
'''
##1.参数设置
oS = optStruct(dataMatIn,classLabels,C,kTup)
unit = mat(ones((oS.m,1))) #[1,1,...,1].T
#I = eye(oS.m)
gamma = kTup[1]
zero = mat(zeros((1,1)))
upmat = hstack((zero,unit.T))
downmat = hstack((unit,oS.K + v1/float(C)))
##2.方程求解
completemat = vstack((upmat,downmat)) #lssvm中求解方程的左边矩阵
rightmat = vstack((zero,oS.labelMat)) # lssvm中求解方程的右边矩阵
b_alpha = completemat.I * rightmat
##3.导出偏置b和Lagrange乘子序列
oS.b = b_alpha[0,0]
for i in range(oS.m):
oS.alphas[i,0] = b_alpha[i+1,0]
e = oS.alphas/C
return oS.alphas,oS.b
def predict(alphas,b,dataMat):
'''预测结果
input:alphas(mat):WLSSVM模型的Lagrange乘子序列
b(float):WLSSVM模型回归方程的偏置
dataMat(mat):测试样本集
output:predict_result(mat):测试结果
'''
m,n = shape(dataMat)
predict_result = mat(zeros((m,1)))
for i in range(m):
Kx = kernelTrans(dataMat,dataMat[i,:],kTup) #可以对alphas进行稀疏处理找到更准确的值
predict_result[i,0] = Kx.T * alphas + b
return predict_result
def predict_average_error(predict_result,label):
'''计算平均预测误差
input:predict_result(mat):预测结果
label(mat):实际结果
output:average_error(float):平均误差
'''
m,n = shape(predict_result)
error = 0.0
for i in range(m):
error += abs(predict_result[i,0] - label[i,0])
average_error = error / m
return average_error
if __name__ == '__main__':
##1.数据导入
print('--------------------Load Data------------------------')
dataMat,labelMat = loadDataSet('sine.txt')
##2.参数设置
print('--------------------Parameter Setup------------------')
C = 0.6
k1 = 0.3
kernel = 'rbf'
kTup = (kernel,k1)
##3.求解LSSVM模型
print('-------------------Save LSSVM Model-----------------')
alphas,b,e = leastSquares(dataMat,labelMat,C,kTup)
##4.计算误差权重
print('----------------Calculate Error Weights-------------')
v1 = weights(e)
##5.求解WLSSVM模型
print('------------------Save WLSSVM Model--------------- -')
alphas1,b1 = weightsleastSquares(dataMat,labelMat,C,kTup,v1)
##6.预测结果
print('------------------Predict Result------------------ -')
predict_result = predict(alphas1,b1,dataMat)
##7.平均误差
print('-------------------Average Error------------------ -')
average_error = predict_average_error(predict_result,labelMat)