-
Notifications
You must be signed in to change notification settings - Fork 680
/
Copy pathta.py
2779 lines (2019 loc) · 89.4 KB
/
ta.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python
# -*- coding: utf-8 -*-
__author__ = 'chengzhi'
"""
tqsdk.ta 模块包含了一批常用的技术指标计算函数
(函数返回值类型保持为 pandas.Dataframe)
"""
import math
import numpy as np
import pandas as pd
import tqsdk.tafunc
def ATR(df, n):
"""
平均真实波幅
Args:
df (pandas.DataFrame): Dataframe格式的K线序列
n (int): 平均真实波幅的周期
Returns:
pandas.DataFrame: 返回的DataFrame包含2列, 分别是"tr"和"atr", 分别代表真实波幅和平均真实波幅
Example::
# 获取 CFFEX.IF1903 合约的平均真实波幅
from tqsdk import TqApi, TqAuth, TqSim
from tqsdk.ta import ATR
api = TqApi(auth=TqAuth("快期账户", "账户密码"))
klines = api.get_kline_serial("CFFEX.IF1903", 24 * 60 * 60)
atr = ATR(klines, 14)
print(atr.tr) # 真实波幅
print(atr.atr) # 平均真实波幅
# 预计的输出是这样的:
[..., 143.0, 48.0, 80.0, ...]
[..., 95.20000000000005, 92.0571428571429, 95.21428571428575, ...]
"""
new_df = pd.DataFrame()
pre_close = df["close"].shift(1)
new_df["tr"] = np.where(df["high"] - df["low"] > np.absolute(pre_close - df["high"]),
np.where(df["high"] - df["low"] > np.absolute(pre_close - df["low"]),
df["high"] - df["low"], np.absolute(pre_close - df["low"])),
np.where(np.absolute(pre_close - df["high"]) > np.absolute(pre_close - df["low"]),
np.absolute(pre_close - df["high"]), np.absolute(pre_close - df["low"])))
new_df["atr"] = tqsdk.tafunc.ma(new_df["tr"], n)
return new_df
def BIAS(df, n):
"""
乖离率
Args:
df (pandas.DataFrame): Dataframe格式的K线序列
n (int): 移动平均的计算周期
Returns:
pandas.DataFrame: 返回的DataFrame包含1列, 是"bias", 代表计算出来的乖离率值
Example::
# 获取 CFFEX.IF1903 合约的乖离率
from tqsdk import TqApi, TqAuth, TqSim
from tqsdk.ta import BIAS
api = TqApi(auth=TqAuth("快期账户", "账户密码"))
klines = api.get_kline_serial("CFFEX.IF1903", 24 * 60 * 60)
bias = BIAS(klines, 6)
print(list(bias["bias"])) # 乖离率
# 预计的输出是这样的:
[..., 2.286835533357118, 2.263301549041151, 0.7068445823271412, ...]
"""
ma1 = tqsdk.tafunc.ma(df["close"], n)
new_df = pd.DataFrame(data=list((df["close"] - ma1) / ma1 * 100), columns=["bias"])
return new_df
def BOLL(df, n, p):
"""
布林线
Args:
df (pandas.DataFrame): Dataframe格式的K线序列
n (int): 周期n
p (int): 计算参数p
Returns:
pandas.DataFrame: 返回的dataframe包含3列, 分别是"mid", "top"和"bottom", 分别代表布林线的中、上、下轨
Example::
# 获取 CFFEX.IF1903 合约的布林线
from tqsdk import TqApi, TqAuth, TqSim
from tqsdk.ta import BOLL
api = TqApi(auth=TqAuth("快期账户", "账户密码"))
klines = api.get_kline_serial("CFFEX.IF1903", 24 * 60 * 60)
boll=BOLL(klines, 26, 2)
print(list(boll["mid"]))
print(list(boll["top"]))
print(list(boll["bottom"]))
# 预计的输出是这样的:
[..., 3401.338461538462, 3425.600000000001, 3452.3230769230777, ...]
[..., 3835.083909752222, 3880.677579320277, 3921.885406954584, ...]
[..., 2967.593013324702, 2970.5224206797247, 2982.760746891571, ...]
"""
new_df = pd.DataFrame()
mid = tqsdk.tafunc.ma(df["close"], n)
std = df["close"].rolling(n).std()
new_df["mid"] = mid
new_df["top"] = mid + p * std
new_df["bottom"] = mid - p * std
return new_df
def DMI(df, n, m):
"""
动向指标
Args:
df (pandas.DataFrame): Dataframe格式的K线序列
n (int): 周期n
m (int): 周期m
Returns:
pandas.DataFrame: 返回的DataFrame包含5列, 是"atr", "pdi", "mdi", "adx"和"adxr", 分别代表平均真实波幅, 上升方向线, 下降方向线, 趋向平均值以及评估数值
Example::
# 获取 CFFEX.IF1903 合约的动向指标
from tqsdk import TqApi, TqAuth, TqSim
from tqsdk.ta import DMI
api = TqApi(auth=TqAuth("快期账户", "账户密码"))
klines = api.get_kline_serial("CFFEX.IF1903", 24 * 60 * 60)
dmi=DMI(klines, 14, 6)
print(list(dmi["atr"]))
print(list(dmi["pdi"]))
print(list(dmi["mdi"]))
print(list(dmi["adx"]))
print(list(dmi["adxr"]))
# 预计的输出是这样的:
[..., 95.20000000000005, 92.0571428571429, 95.21428571428575, ...]
[..., 51.24549819927972, 46.55493482309126, 47.14178544636161, ...]
[..., 6.497599039615802, 6.719428926132791, 6.4966241560389655, ...]
[..., 78.80507786697127, 76.8773544355082, 75.11662664555287, ...]
[..., 70.52493837227118, 73.28531799111778, 74.59341569051983, ...]
"""
new_df = pd.DataFrame()
new_df["atr"] = ATR(df, n)["atr"]
pre_high = df["high"].shift(1)
pre_low = df["low"].shift(1)
hd = df["high"] - pre_high
ld = pre_low - df["low"]
admp = tqsdk.tafunc.ma(pd.Series(np.where((hd > 0) & (hd > ld), hd, 0)), n)
admm = tqsdk.tafunc.ma(pd.Series(np.where((ld > 0) & (ld > hd), ld, 0)), n)
new_df["pdi"] = pd.Series(np.where(new_df["atr"] > 0, admp / new_df["atr"] * 100, np.NaN)).ffill()
new_df["mdi"] = pd.Series(np.where(new_df["atr"] > 0, admm / new_df["atr"] * 100, np.NaN)).ffill()
ad = pd.Series(np.absolute(new_df["mdi"] - new_df["pdi"]) / (new_df["mdi"] + new_df["pdi"]) * 100)
new_df["adx"] = tqsdk.tafunc.ma(ad, m)
new_df["adxr"] = (new_df["adx"] + new_df["adx"].shift(m)) / 2
return new_df
def KDJ(df, n, m1, m2):
"""
随机指标
Args:
df (pandas.DataFrame): Dataframe格式的K线序列
n (int): 周期n
m1 (int): 参数m1
m2 (int): 参数m2
Returns:
pandas.DataFrame: 返回的DataFrame包含3列, 是"k", "d"和"j", 分别代表计算出来的K值, D值和J值
Example::
# 获取 CFFEX.IF1903 合约的随机指标
from tqsdk import TqApi, TqAuth, TqSim
from tqsdk.ta import KDJ
api = TqApi(auth=TqAuth("快期账户", "账户密码"))
klines = api.get_kline_serial("CFFEX.IF1903", 24 * 60 * 60)
kdj = KDJ(klines, 9, 3, 3)
print(list(kdj["k"]))
print(list(kdj["d"]))
print(list(kdj["j"]))
# 预计的输出是这样的:
[..., 80.193148635668, 81.83149521546302, 84.60665654726242, ...]
[..., 82.33669997171852, 82.16829838630002, 82.98108443995415, ...]
[..., 77.8451747299365, 75.90604596356695, 81.15788887378903, ...]
"""
new_df = pd.DataFrame()
hv = df["high"].rolling(n).max()
lv = df["low"].rolling(n).min()
rsv = pd.Series(np.where(hv == lv, 0, (df["close"] - lv) / (hv - lv) * 100))
new_df["k"] = tqsdk.tafunc.sma(rsv, m1, 1)
new_df["d"] = tqsdk.tafunc.sma(new_df["k"], m2, 1)
new_df["j"] = 3 * new_df["k"] - 2 * new_df["d"]
return new_df
def MACD(df, short, long, m):
"""
异同移动平均线
Args:
df (pandas.DataFrame): Dataframe格式的K线序列
short (int): 短周期
long (int): 长周期
m (int): 移动平均线的周期
Returns:
pandas.DataFrame: 返回的DataFrame包含3列, 是"diff", "dea"和"bar", 分别代表离差值, DIFF的指数加权移动平均线, MACD的柱状线
(注: 因 DataFrame 有diff()函数,因此获取到此指标后:"diff"字段使用 macd["diff"] 方式来取值,而非 macd.diff )
Example::
# 获取 CFFEX.IF1903 合约的异同移动平均线
from tqsdk import TqApi, TqAuth, TqSim
from tqsdk.ta import MACD
api = TqApi(auth=TqAuth("快期账户", "账户密码"))
klines = api.get_kline_serial("CFFEX.IF1903", 24 * 60 * 60)
macd = MACD(klines, 12, 26, 9)
print(list(macd["diff"]))
print(list(macd["dea"]))
print(list(macd["bar"]))
# 预计的输出是这样的:
[..., 149.58313904045826, 155.50790712365142, 160.27622505636737, ...]
[..., 121.46944573796466, 128.27713801510203, 134.6769554233551, ...]
[..., 56.2273866049872, 54.46153821709879, 51.19853926602451, ...]
"""
new_df = pd.DataFrame()
eshort = tqsdk.tafunc.ema(df["close"], short)
elong = tqsdk.tafunc.ema(df["close"], long)
new_df["diff"] = eshort - elong
new_df["dea"] = tqsdk.tafunc.ema(new_df["diff"], m)
new_df["bar"] = 2 * (new_df["diff"] - new_df["dea"])
return new_df
# @numba.njit
def _sar(open, high, low, close, range_high, range_low, n, step, maximum):
n = max(np.sum(np.isnan(range_high)), np.sum(np.isnan(range_low))) + 2
sar = np.empty_like(close)
sar[:n] = np.NAN
af = 0
ep = 0
trend = 1 if (close[n] - open[n]) > 0 else -1
if trend == 1:
sar[n] = min(range_low[n - 2], low[n - 1])
else:
sar[n] = max(range_high[n - 2], high[n - 1])
for i in range(n, len(sar)):
if i != n:
if abs(trend) > 1:
sar[i] = sar[i - 1] + af * (ep - sar[i - 1])
elif trend == 1:
sar[i] = min(range_low[i - 2], low[i - 1])
elif trend == -1:
sar[i] = max(range_high[i - 2], high[i - 1])
if trend > 0:
if sar[i - 1] > low[i]:
ep = low[i]
af = step
trend = -1
else:
ep = high[i]
af = min(af + step, maximum) if ep > range_high[i - 1] else af
trend += 1
else:
if sar[i - 1] < high[i]:
ep = high[i]
af = step
trend = 1
else:
ep = low[i]
af = min(af + step, maximum) if ep < range_low[i - 1] else af
trend -= 1
return sar
def SAR(df, n, step, max):
"""
抛物线指标
Args:
df (pandas.DataFrame): Dataframe格式的K线序列
n (int): SAR的周期n
step (float): 步长
max (float): 极值
Returns:
pandas.DataFrame: 返回的DataFrame包含1列, 是"sar", 代表计算出来的SAR值
Example::
# 获取 CFFEX.IF1903 合约的抛物线指标
from tqsdk import TqApi, TqAuth, TqSim
from tqsdk.ta import SAR
api = TqApi(auth=TqAuth("快期账户", "账户密码"))
klines = api.get_kline_serial("CFFEX.IF1903", 24 * 60 * 60)
sar=SAR(klines, 4, 0.02, 0.2)
print(list(sar["sar"]))
# 预计的输出是这样的:
[..., 3742.313604622293, 3764.5708836978342, 3864.4, ...]
"""
range_high = df["high"].rolling(n - 1).max()
range_low = df["low"].rolling(n - 1).min()
sar = _sar(df["open"].values, df["high"].values, df["low"].values, df["close"].values, range_high.values,
range_low.values, n, step, max)
new_df = pd.DataFrame(data=sar, columns=["sar"])
return new_df
def WR(df, n):
"""
威廉指标
Args:
df (pandas.DataFrame): Dataframe格式的K线序列
n (int): 周期n
Returns:
pandas.DataFrame: 返回的DataFrame包含1列, 是"wr", 代表计算出来的威廉指标
Example::
# 获取 CFFEX.IF1903 合约的威廉指标
from tqsdk import TqApi, TqAuth, TqSim
from tqsdk.ta import WR
api = TqApi(auth=TqAuth("快期账户", "账户密码"))
klines = api.get_kline_serial("CFFEX.IF1903", 24 * 60 * 60)
wr = WR(klines, 14)
print(list(wr["wr"]))
# 预计的输出是这样的:
[..., -12.843029637760672, -8.488840102451537, -16.381322957198407, ...]
"""
hn = df["high"].rolling(n).max()
ln = df["low"].rolling(n).min()
new_df = pd.DataFrame(data=list((hn - df["close"]) / (hn - ln) * (-100)), columns=["wr"])
return new_df
def RSI(df, n):
"""
相对强弱指标
Args:
df (pandas.DataFrame): Dataframe格式的K线序列
n (int): 周期n
Returns:
pandas.DataFrame: 返回的DataFrame包含1列, 是"rsi", 代表计算出来的相对强弱指标
Example::
# 获取 CFFEX.IF1903 合约的相对强弱指标
from tqsdk import TqApi, TqAuth, TqSim
from tqsdk.ta import RSI
api = TqApi(auth=TqAuth("快期账户", "账户密码"))
klines = api.get_kline_serial("CFFEX.IF1903", 24 * 60 * 60)
rsi = RSI(klines, 7)
print(list(rsi["rsi"]))
# 预计的输出是这样的:
[..., 80.21169825630794, 81.57315806032297, 72.34968324924667, ...]
"""
lc = df["close"].shift(1)
rsi = tqsdk.tafunc.sma(pd.Series(np.where(df["close"] - lc > 0, df["close"] - lc, 0)), n, 1) / \
tqsdk.tafunc.sma(np.absolute(df["close"] - lc), n, 1) * 100
new_df = pd.DataFrame(data=rsi, columns=["rsi"])
return new_df
def ASI(df):
"""
振动升降指标
Args:
df (pandas.DataFrame): Dataframe格式的K线序列
Returns:
pandas.DataFrame: 返回的DataFrame包含1列, 是"asi", 代表计算出来的振动升降指标
Example::
# 获取 CFFEX.IF1903 合约的振动升降指标
from tqsdk import TqApi, TqAuth, TqSim
from tqsdk.ta import ASI
api = TqApi(auth=TqAuth("快期账户", "账户密码"))
klines = api.get_kline_serial("CFFEX.IF1903", 24 * 60 * 60)
asi = ASI(klines)
print(list(asi["asi"]))
# 预计的输出是这样的:
[..., -4690.587005986468, -4209.182816350308, -4699.742010304962, ...]
"""
lc = df["close"].shift(1) # 上一交易日的收盘价
aa = np.absolute(df["high"] - lc)
bb = np.absolute(df["low"] - lc)
cc = np.absolute(df["high"] - df["low"].shift(1))
dd = np.absolute(lc - df["open"].shift(1))
r = np.where((aa > bb) & (aa > cc), aa + bb / 2 + dd / 4,
np.where((bb > cc) & (bb > aa), bb + aa / 2 + dd / 4, cc + dd / 4))
x = df["close"] - lc + (df["close"] - df["open"]) / 2 + lc - df["open"].shift(1)
si = np.where(r == 0, 0, 16 * x / r * np.where(aa > bb, aa, bb))
new_df = pd.DataFrame(data=list(pd.Series(si).cumsum()), columns=["asi"])
return new_df
def VR(df, n):
"""
VR 容量比率
Args:
df (pandas.DataFrame): Dataframe格式的K线序列
n (int): 周期n
Returns:
pandas.DataFrame: 返回的DataFrame包含1列, 是"vr", 代表计算出来的VR
Example::
# 获取 CFFEX.IF1903 合约的VR
from tqsdk import TqApi, TqAuth, TqSim
from tqsdk.ta import VR
api = TqApi(auth=TqAuth("快期账户", "账户密码"))
klines = api.get_kline_serial("CFFEX.IF1903", 24 * 60 * 60)
vr = VR(klines, 26)
print(list(vr["vr"]))
# 预计的输出是这样的:
[..., 150.1535316212112, 172.2897559521652, 147.04236342791924, ...]
"""
lc = df["close"].shift(1)
vr = pd.Series(np.where(df["close"] > lc, df["volume"], 0)).rolling(n).sum() / pd.Series(
np.where(df["close"] <= lc, df["volume"], 0)).rolling(n).sum() * 100
new_df = pd.DataFrame(data=list(vr), columns=["vr"])
return new_df
def ARBR(df, n):
"""
人气意愿指标
Args:
df (pandas.DataFrame): Dataframe格式的K线序列
n (int): 周期n
Returns:
pandas.DataFrame: 返回的DataFrame包含2列, 是"ar"和"br" , 分别代表人气指标和意愿指标
Example::
# 获取 CFFEX.IF1903 合约的人气意愿指标
from tqsdk import TqApi, TqAuth, TqSim
from tqsdk.ta import ARBR
api = TqApi(auth=TqAuth("快期账户", "账户密码"))
klines = api.get_kline_serial("CFFEX.IF1903", 24 * 60 * 60)
arbr = ARBR(klines, 26)
print(list(arbr["ar"]))
print(list(arbr["br"]))
# 预计的输出是这样的:
[..., 183.5698517817721, 189.98732572877034, 175.08802816901382, ...]
[..., 267.78549382716034, 281.567546278062, 251.08041091037902, ...]
"""
new_df = pd.DataFrame()
new_df["ar"] = (df["high"] - df["open"]).rolling(n).sum() / (df["open"] - df["low"]).rolling(n).sum() * 100
new_df["br"] = pd.Series(
np.where(df["high"] - df["close"].shift(1) > 0, df["high"] - df["close"].shift(1), 0)).rolling(
n).sum() / pd.Series(
np.where(df["close"].shift(1) - df["low"] > 0, df["close"].shift(1) - df["low"], 0)).rolling(n).sum() * 100
return new_df
def DMA(df, short, long, m):
"""
平均线差
Args:
df (pandas.DataFrame): Dataframe格式的K线序列
short (int): 短周期
long (int): 长周期
m (int): 计算周期m
Returns:
pandas.DataFrame: 返回的DataFrame包含2列, 是"ddd"和"ama", 分别代表长短周期均值的差和ddd的简单移动平均值
Example::
# 获取 CFFEX.IF1903 合约的平均线差
from tqsdk import TqApi, TqAuth, TqSim
from tqsdk.ta import DMA
api = TqApi(auth=TqAuth("快期账户", "账户密码"))
klines = api.get_kline_serial("CFFEX.IF1903", 24 * 60 * 60)
dma = DMA(klines, 10, 50, 10)
print(list(dma["ddd"]))
print(list(dma["ama"]))
# 预计的输出是这样的:
[..., 409.2520000000022, 435.68000000000166, 458.3360000000025, ...]
[..., 300.64360000000147, 325.0860000000015, 349.75200000000166, ...]
"""
new_df = pd.DataFrame()
new_df["ddd"] = tqsdk.tafunc.ma(df["close"], short) - tqsdk.tafunc.ma(df["close"], long)
new_df["ama"] = tqsdk.tafunc.ma(new_df["ddd"], m)
return new_df
def EXPMA(df, p1, p2):
"""
指数加权移动平均线组合
Args:
df (pandas.DataFrame): Dataframe格式的K线序列
p1 (int): 周期1
p2 (int): 周期2
Returns:
pandas.DataFrame: 返回的DataFrame包含2列, 是"ma1"和"ma2", 分别代表指数加权移动平均线1和指数加权移动平均线2
Example::
# 获取 CFFEX.IF1903 合约的指数加权移动平均线组合
from tqsdk import TqApi, TqAuth, TqSim
from tqsdk.ta import EXPMA
api = TqApi(auth=TqAuth("快期账户", "账户密码"))
klines = api.get_kline_serial("CFFEX.IF1903", 24 * 60 * 60)
expma = EXPMA(klines, 5, 10)
print(list(expma["ma1"]))
print(list(expma["ma2"]))
# 预计的输出是这样的:
[..., 3753.679549224137, 3784.6530328160916, 3792.7020218773946, ...]
[..., 3672.4492964832566, 3704.113060759028, 3723.1470497119317, ...]
"""
new_df = pd.DataFrame()
new_df["ma1"] = tqsdk.tafunc.ema(df["close"], p1)
new_df["ma2"] = tqsdk.tafunc.ema(df["close"], p2)
return new_df
def CR(df, n, m):
"""
CR能量
Args:
df (pandas.DataFrame): Dataframe格式的K线序列
n (int): 周期n
m (int): 周期m
Returns:
pandas.DataFrame: 返回的DataFrame包含2列, 是"cr"和"crma", 分别代表CR值和CR值的简单移动平均值
Example::
# 获取 CFFEX.IF1903 合约的CR能量
from tqsdk import TqApi, TqAuth, TqSim
from tqsdk.ta import CR
api = TqApi(auth=TqAuth("快期账户", "账户密码"))
klines = api.get_kline_serial("CFFEX.IF1903", 24 * 60 * 60)
cr = CR(klines, 26, 5)
print(list(cr["cr"]))
print(list(cr["crma"]))
# 预计的输出是这样的:
[..., 291.5751884671343, 316.71058105671943, 299.50578748862046, ...]
[..., 316.01257308163747, 319.3545725665982, 311.8275184876805, ...]
"""
new_df = pd.DataFrame()
mid = (df["high"] + df["low"] + df["close"]) / 3
new_df["cr"] = pd.Series(np.where(0 > df["high"] - mid.shift(1), 0, df["high"] - mid.shift(1))).rolling(
n).sum() / pd.Series(np.where(0 > mid.shift(1) - df["low"], 0, mid.shift(1) - df["low"])).rolling(n).sum() * 100
new_df["crma"] = tqsdk.tafunc.ma(new_df["cr"], m).shift(int(m / 2.5 + 1))
return new_df
def CCI(df, n):
"""
顺势指标
Args:
df (pandas.DataFrame): Dataframe格式的K线序列
n (int): 周期n
Returns:
pandas.DataFrame: 返回的DataFrame包含1列, 是"cci", 代表计算出来的CCI值
Example::
# 获取 CFFEX.IF1903 合约的顺势指标
from tqsdk import TqApi, TqAuth, TqSim
from tqsdk.ta import CCI
api = TqApi(auth=TqAuth("快期账户", "账户密码"))
klines = api.get_kline_serial("CFFEX.IF1903", 24 * 60 * 60)
cci = CCI(klines, 14)
print(list(cci["cci"]))
# 预计的输出是这样的:
[..., 98.13054698810375, 93.57661788413617, 77.8671380173813, ...]
"""
typ = (df["high"] + df["low"] + df["close"]) / 3
ma = tqsdk.tafunc.ma(typ, n)
def mad(x):
return np.fabs(x - x.mean()).mean()
md = typ.rolling(window=n).apply(mad, raw=True) # 平均绝对偏差
new_df = pd.DataFrame(data=list((typ - ma) / (md * 0.015)), columns=["cci"])
return new_df
def OBV(df):
"""
能量潮
Args:
df (pandas.DataFrame): Dataframe格式的K线序列
Returns:
pandas.DataFrame: 返回的DataFrame包含1列, 是"obv", 代表计算出来的OBV值
Example::
# 获取 CFFEX.IF1903 合约的能量潮
from tqsdk import TqApi, TqAuth, TqSim
from tqsdk.ta import OBV
api = TqApi(auth=TqAuth("快期账户", "账户密码"))
klines = api.get_kline_serial("CFFEX.IF1903", 24 * 60 * 60)
obv = OBV(klines)
print(list(obv["obv"]))
# 预计的输出是这样的:
[..., 267209, 360351, 264476, ...]
"""
lc = df["close"].shift(1)
obv = (np.where(df["close"] > lc, df["volume"], np.where(df["close"] < lc, -df["volume"], 0))).cumsum()
new_df = pd.DataFrame(data=obv, columns=["obv"])
return new_df
def CDP(df, n):
"""
逆势操作
Args:
df (pandas.DataFrame): Dataframe格式的K线序列
n (int): 周期n
Returns:
pandas.DataFrame: 返回的DataFrame包含4列, 是"ah", "al", "nh", "nl", 分别代表最高值, 最低值, 近高值, 近低值
Example::
# 获取 CFFEX.IF1903 合约的逆势操作指标
from tqsdk import TqApi, TqAuth, TqSim
from tqsdk.ta import CDP
api = TqApi(auth=TqAuth("快期账户", "账户密码"))
klines = api.get_kline_serial("CFFEX.IF1903", 24 * 60 * 60)
cdp = CDP(klines, 3)
print(list(cdp["ah"]))
print(list(cdp["al"]))
print(list(cdp["nh"]))
print(list(cdp["nl"]))
# 预计的输出是这样的:
[..., 3828.244444444447, 3871.733333333336, 3904.37777777778, ...]
[..., 3656.64444444444, 3698.3999999999955, 3734.9111111111065, ...]
[..., 3743.8888888888837, 3792.3999999999946, 3858.822222222217, ...]
[..., 3657.2222222222213, 3707.6666666666656, 3789.955555555554, ...]
"""
new_df = pd.DataFrame()
pt = df["high"].shift(1) - df["low"].shift(1)
cdp = (df["high"].shift(1) + df["low"].shift(1) + df["close"].shift(1)) / 3
new_df["ah"] = tqsdk.tafunc.ma(cdp + pt, n)
new_df["al"] = tqsdk.tafunc.ma(cdp - pt, n)
new_df["nh"] = tqsdk.tafunc.ma(2 * cdp - df["low"], n)
new_df["nl"] = tqsdk.tafunc.ma(2 * cdp - df["high"], n)
return new_df
def HCL(df, n):
"""
均线通道
Args:
df (pandas.DataFrame): Dataframe格式的K线序列
n (int): 周期n
Returns:
pandas.DataFrame: 返回的DataFrame包含3列, 是"mah", "mal", "mac", 分别代表最高价的移动平均线, 最低价的移动平均线以及收盘价的移动平均线
Example::
# 获取 CFFEX.IF1903 合约的均线通道指标
from tqsdk import TqApi, TqAuth, TqSim
from tqsdk.ta import HCL
api = TqApi(auth=TqAuth("快期账户", "账户密码"))
klines = api.get_kline_serial("CFFEX.IF1903", 24 * 60 * 60)
hcl = HCL(klines, 10)
print(list(hcl["mah"]))
print(list(hcl["mal"]))
print(list(hcl["mac"]))
# 预计的输出是这样的:
[..., 3703.5400000000022, 3743.2800000000025, 3778.300000000002, ...]
[..., 3607.339999999999, 3643.079999999999, 3677.579999999999, ...]
[..., 3666.1600000000008, 3705.8600000000006, 3741.940000000001, ...]
"""
new_df = pd.DataFrame()
new_df["mah"] = tqsdk.tafunc.ma(df["high"], n)
new_df["mal"] = tqsdk.tafunc.ma(df["low"], n)
new_df["mac"] = tqsdk.tafunc.ma(df["close"], n)
return new_df
def ENV(df, n, k):
"""
包略线 (Envelopes)
Args:
df (pandas.DataFrame): Dataframe格式的K线序列
n (int): 周期n
k (float): 参数k
Returns:
pandas.DataFrame: 返回的DataFrame包含2列, 是"upper", "lower", 分别代表上线和下线
Example::
# 获取 CFFEX.IF1903 合约的包略线
from tqsdk import TqApi, TqAuth, TqSim
from tqsdk.ta import ENV
api = TqApi(auth=TqAuth("快期账户", "账户密码"))
klines = api.get_kline_serial("CFFEX.IF1903", 24 * 60 * 60)
env = ENV(klines, 14, 6)
print(list(env["upper"]))
print(list(env["lower"]))
# 预计的输出是这样的:
[..., 3842.2122857142863, 3876.7531428571433, 3893.849428571429, ...]
[..., 3407.244857142857, 3437.875428571429, 3453.036285714286, ...]
"""
new_df = pd.DataFrame()
new_df["upper"] = tqsdk.tafunc.ma(df["close"], n) * (1 + k / 100)
new_df["lower"] = tqsdk.tafunc.ma(df["close"], n) * (1 - k / 100)
return new_df
def MIKE(df, n):
"""
麦克指标
Args:
df (pandas.DataFrame): Dataframe格式的K线序列
n (int): 周期n
Returns:
pandas.DataFrame: 返回的DataFrame包含6列, 是"wr", "mr", "sr", "ws", "ms", "ss", 分别代表初级压力价,中级压力,强力压力,初级支撑,中级支撑和强力支撑
Example::
# 获取 CFFEX.IF1903 合约的麦克指标
from tqsdk import TqApi, TqAuth, TqSim
from tqsdk.ta import MIKE
api = TqApi(auth=TqAuth("快期账户", "账户密码"))
klines = api.get_kline_serial("CFFEX.IF1903", 24 * 60 * 60)
mike = MIKE(klines, 12)
print(list(mike["wr"]))
print(list(mike["mr"]))
print(list(mike["sr"]))
print(list(mike["ws"]))
print(list(mike["ms"]))
print(list(mike["ss"]))
# 预计的输出是这样的:
[..., 4242.4, 4203.333333333334, 3986.266666666666, ...]
[..., 4303.6, 4283.866666666667, 4175.333333333333, ...]
[..., 4364.8, 4364.4, 4364.4, ...]
[..., 3770.5999999999995, 3731.9333333333343, 3514.866666666666, ...]
[..., 3359.9999999999995, 3341.066666666667, 3232.533333333333, ...]
[..., 2949.3999999999996, 2950.2, 2950.2, ...]
"""
new_df = pd.DataFrame()
typ = (df["high"] + df["low"] + df["close"]) / 3
ll = df["low"].rolling(n).min()
hh = df["high"].rolling(n).max()
new_df["wr"] = typ + (typ - ll)
new_df["mr"] = typ + (hh - ll)
new_df["sr"] = 2 * hh - ll
new_df["ws"] = typ - (hh - typ)
new_df["ms"] = typ - (hh - ll)
new_df["ss"] = 2 * ll - hh
return new_df
def PUBU(df, m):
"""
瀑布线
Args:
df (pandas.DataFrame): Dataframe格式的K线序列
m (int): 周期m
Returns:
pandas.DataFrame: 返回的DataFrame包含1列, 是"pb", 代表计算出的瀑布线
Example::
# 获取 CFFEX.IF1903 合约的瀑布线
from tqsdk import TqApi, TqAuth, TqSim
from tqsdk.ta import PUBU
api = TqApi(auth=TqAuth("快期账户", "账户密码"))
klines = api.get_kline_serial("CFFEX.IF1903", 24 * 60 * 60)
pubu = PUBU(klines, 4)
print(list(pubu["pb"]))
# 预计的输出是这样的:
[..., 3719.087702972829, 3728.9326217836974, 3715.7537397368856, ...]
"""
pb = (tqsdk.tafunc.ema(df["close"], m) + tqsdk.tafunc.ma(df["close"], m * 2) + tqsdk.tafunc.ma(df["close"], m * 4)) / 3
new_df = pd.DataFrame(data=list(pb), columns=["pb"])
return new_df
def BBI(df, n1, n2, n3, n4):
"""
多空指数
Args:
df (pandas.DataFrame): Dataframe格式的K线序列
n1 (int): 周期n1
n2 (int): 周期n2
n3 (int): 周期n3
n4 (int): 周期n4
Returns:
pandas.DataFrame: 返回的DataFrame包含1列, 是"bbi", 代表计算出的多空指标
Example::
# 获取 CFFEX.IF1903 合约的多空指标
from tqsdk import TqApi, TqAuth, TqSim
from tqsdk.ta import BBI
api = TqApi(auth=TqAuth("快期账户", "账户密码"))
klines = api.get_kline_serial("CFFEX.IF1903", 24 * 60 * 60)
bbi = BBI(klines, 3, 6, 12, 24)
print(list(bbi["bbi"]))
# 预计的输出是这样的:
[..., 3679.841666666668, 3700.9645833333348, 3698.025000000002, ...]
"""
bbi = (tqsdk.tafunc.ma(df["close"], n1) + tqsdk.tafunc.ma(df["close"], n2) + tqsdk.tafunc.ma(df["close"], n3) + tqsdk.tafunc.ma(
df["close"], n4)) / 4
new_df = pd.DataFrame(data=list(bbi), columns=["bbi"])
return new_df
def DKX(df, m):
"""
多空线
Args:
df (pandas.DataFrame): Dataframe格式的K线序列
m (int): 周期m
Returns:
pandas.DataFrame: 返回的DataFrame包含2列, 是"b", "d", 分别代表计算出来的DKX指标及DKX的m日简单移动平均值
Example::
# 获取 CFFEX.IF1903 合约的多空线
from tqsdk import TqApi, TqAuth, TqSim
from tqsdk.ta import DKX
api = TqApi(auth=TqAuth("快期账户", "账户密码"))
klines = api.get_kline_serial("CFFEX.IF1903", 24 * 60 * 60)
dkx = DKX(klines, 10)
print(list(dkx["b"]))
print(list(dkx["d"]))
# 预计的输出是这样的:
[..., 3632.081746031746, 3659.4501587301593, 3672.744761904762, ...]
[..., 3484.1045714285706, 3516.1797301587294, 3547.44857142857, ...]
"""
new_df = pd.DataFrame()
a = (3 * df["close"] + df["high"] + df["low"] + df["open"]) / 6
new_df["b"] = (20 * a + 19 * a.shift(1) + 18 * a.shift(2) + 17 * a.shift(3) + 16 * a.shift(4) + 15 * a.shift(
5) + 14 * a.shift(6)
+ 13 * a.shift(7) + 12 * a.shift(8) + 11 * a.shift(9) + 10 * a.shift(10) + 9 * a.shift(
11) + 8 * a.shift(
12) + 7 * a.shift(13) + 6 * a.shift(14) + 5 * a.shift(15) + 4 * a.shift(16) + 3 * a.shift(
17) + 2 * a.shift(18) + a.shift(20)
) / 210
new_df["d"] = tqsdk.tafunc.ma(new_df["b"], m)
return new_df
def BBIBOLL(df, n, m):
"""
多空布林线
Args:
df (pandas.DataFrame): Dataframe格式的K线序列
n (int): 参数n
m (int): 参数m