-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
78 lines (63 loc) · 2.28 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
from __future__ import print_function
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.optimizers import RMSprop
from keras.utils import to_categorical
from sklearn.preprocessing import LabelEncoder
from scipy import misc
import numpy as np
import imageio
import json
import os
le = LabelEncoder()
batch_size = 30
epochs = 200
def get_class_names(prediction):
return le.inverse_transform(prediction)
def load_data(data_dir='data'):
train_x = []
train_y = []
for root, dirs, files in os.walk(data_dir):
for f in files:
tmp_row = misc.imresize(imageio.imread(os.path.join(root, f), pilmode="L"), (32,32)).flatten()
tmp_label = root.split('/')[1]
train_x.append(tmp_row)
train_y.append(tmp_label)
return (np.array(train_x), np.array(train_y))
def train_and_save(x_train, y_train):
x_train = x_train.reshape(600, 32 * 32)
num_classes = np.unique(y_train).shape[0]
# Encode labels
y_train = le.fit_transform(y_train)
y_train = to_categorical(y_train, num_classes)
x_train = x_train.astype('float32')
x_train /= 255
# Train test split
x_test = x_train[:100]
y_test = y_train[:100]
x_train = x_train[100:]
y_train = y_train[100:]
# Build model
model = Sequential()
model.add(Dense(512, activation='relu', input_shape=(32*32,)))
model.add(Dropout(0.2))
model.add(Dense(512, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss='categorical_crossentropy',
optimizer=RMSprop(),
metrics=['accuracy'])
# Train model
history = model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(x_test, y_test))
print('Train loss:', history.history['loss'][-1])
print('Train accuracy:', history.history['acc'][-1])
# Save keras model for later prediction
model.save('pokemon_classifier.h5')
# Save label mappings
label_dict = {a[0]: b for a, b in np.ndenumerate(le.inverse_transform([i for i in range(num_classes)]))}
with open("mappings.json", "w") as fp:
json.dump(label_dict, fp)