forked from mackyle/sqlite
-
Notifications
You must be signed in to change notification settings - Fork 0
/
parse.y
1551 lines (1415 loc) · 54.2 KB
/
parse.y
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
** 2001 September 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains SQLite's grammar for SQL. Process this file
** using the lemon parser generator to generate C code that runs
** the parser. Lemon will also generate a header file containing
** numeric codes for all of the tokens.
*/
// All token codes are small integers with #defines that begin with "TK_"
%token_prefix TK_
// The type of the data attached to each token is Token. This is also the
// default type for non-terminals.
//
%token_type {Token}
%default_type {Token}
// The generated parser function takes a 4th argument as follows:
%extra_argument {Parse *pParse}
// This code runs whenever there is a syntax error
//
%syntax_error {
UNUSED_PARAMETER(yymajor); /* Silence some compiler warnings */
if( TOKEN.z[0] ){
sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN);
}else{
sqlite3ErrorMsg(pParse, "incomplete input");
}
}
%stack_overflow {
sqlite3ErrorMsg(pParse, "parser stack overflow");
}
// The name of the generated procedure that implements the parser
// is as follows:
%name sqlite3Parser
// The following text is included near the beginning of the C source
// code file that implements the parser.
//
%include {
#include "sqliteInt.h"
/*
** Disable all error recovery processing in the parser push-down
** automaton.
*/
#define YYNOERRORRECOVERY 1
/*
** Make yytestcase() the same as testcase()
*/
#define yytestcase(X) testcase(X)
/*
** Indicate that sqlite3ParserFree() will never be called with a null
** pointer.
*/
#define YYPARSEFREENEVERNULL 1
/*
** In the amalgamation, the parse.c file generated by lemon and the
** tokenize.c file are concatenated. In that case, sqlite3RunParser()
** has access to the the size of the yyParser object and so the parser
** engine can be allocated from stack. In that case, only the
** sqlite3ParserInit() and sqlite3ParserFinalize() routines are invoked
** and the sqlite3ParserAlloc() and sqlite3ParserFree() routines can be
** omitted.
*/
#ifdef SQLITE_AMALGAMATION
# define sqlite3Parser_ENGINEALWAYSONSTACK 1
#endif
/*
** Alternative datatype for the argument to the malloc() routine passed
** into sqlite3ParserAlloc(). The default is size_t.
*/
#define YYMALLOCARGTYPE u64
/*
** An instance of the following structure describes the event of a
** TRIGGER. "a" is the event type, one of TK_UPDATE, TK_INSERT,
** TK_DELETE, or TK_INSTEAD. If the event is of the form
**
** UPDATE ON (a,b,c)
**
** Then the "b" IdList records the list "a,b,c".
*/
struct TrigEvent { int a; IdList * b; };
/*
** Disable lookaside memory allocation for objects that might be
** shared across database connections.
*/
static void disableLookaside(Parse *pParse){
pParse->disableLookaside++;
pParse->db->lookaside.bDisable++;
}
} // end %include
// Input is a single SQL command
input ::= cmdlist.
cmdlist ::= cmdlist ecmd.
cmdlist ::= ecmd.
ecmd ::= SEMI.
ecmd ::= cmdx SEMI.
%ifndef SQLITE_OMIT_EXPLAIN
ecmd ::= explain cmdx.
explain ::= EXPLAIN. { pParse->explain = 1; }
explain ::= EXPLAIN QUERY PLAN. { pParse->explain = 2; }
%endif SQLITE_OMIT_EXPLAIN
cmdx ::= cmd. { sqlite3FinishCoding(pParse); }
///////////////////// Begin and end transactions. ////////////////////////////
//
cmd ::= BEGIN transtype(Y) trans_opt. {sqlite3BeginTransaction(pParse, Y);}
trans_opt ::= .
trans_opt ::= TRANSACTION.
trans_opt ::= TRANSACTION nm.
%type transtype {int}
transtype(A) ::= . {A = TK_DEFERRED;}
transtype(A) ::= DEFERRED(X). {A = @X; /*A-overwrites-X*/}
transtype(A) ::= IMMEDIATE(X). {A = @X; /*A-overwrites-X*/}
transtype(A) ::= EXCLUSIVE(X). {A = @X; /*A-overwrites-X*/}
cmd ::= COMMIT|END(X) trans_opt. {sqlite3EndTransaction(pParse,@X);}
cmd ::= ROLLBACK(X) trans_opt. {sqlite3EndTransaction(pParse,@X);}
savepoint_opt ::= SAVEPOINT.
savepoint_opt ::= .
cmd ::= SAVEPOINT nm(X). {
sqlite3Savepoint(pParse, SAVEPOINT_BEGIN, &X);
}
cmd ::= RELEASE savepoint_opt nm(X). {
sqlite3Savepoint(pParse, SAVEPOINT_RELEASE, &X);
}
cmd ::= ROLLBACK trans_opt TO savepoint_opt nm(X). {
sqlite3Savepoint(pParse, SAVEPOINT_ROLLBACK, &X);
}
///////////////////// The CREATE TABLE statement ////////////////////////////
//
cmd ::= create_table create_table_args.
create_table ::= createkw temp(T) TABLE ifnotexists(E) nm(Y) dbnm(Z). {
sqlite3StartTable(pParse,&Y,&Z,T,0,0,E);
}
createkw(A) ::= CREATE(A). {disableLookaside(pParse);}
%type ifnotexists {int}
ifnotexists(A) ::= . {A = 0;}
ifnotexists(A) ::= IF NOT EXISTS. {A = 1;}
%type temp {int}
%ifndef SQLITE_OMIT_TEMPDB
temp(A) ::= TEMP. {A = 1;}
%endif SQLITE_OMIT_TEMPDB
temp(A) ::= . {A = 0;}
create_table_args ::= LP columnlist conslist_opt(X) RP(E) table_options(F). {
sqlite3EndTable(pParse,&X,&E,F,0);
}
create_table_args ::= AS select(S). {
sqlite3EndTable(pParse,0,0,0,S);
sqlite3SelectDelete(pParse->db, S);
}
%type table_options {int}
table_options(A) ::= . {A = 0;}
table_options(A) ::= WITHOUT nm(X). {
if( X.n==5 && sqlite3_strnicmp(X.z,"rowid",5)==0 ){
A = TF_WithoutRowid | TF_NoVisibleRowid;
}else{
A = 0;
sqlite3ErrorMsg(pParse, "unknown table option: %.*s", X.n, X.z);
}
}
columnlist ::= columnlist COMMA columnname carglist.
columnlist ::= columnname carglist.
columnname(A) ::= nm(A) typetoken(Y). {sqlite3AddColumn(pParse,&A,&Y);}
// Declare some tokens early in order to influence their values, to
// improve performance and reduce the executable size. The goal here is
// to get the "jump" operations in ISNULL through ESCAPE to have numeric
// values that are early enough so that all jump operations are clustered
// at the beginning, but also so that the comparison tokens NE through GE
// are as large as possible so that they are near to FUNCTION, which is a
// token synthesized by addopcodes.tcl.
//
%token ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST.
%token CONFLICT DATABASE DEFERRED DESC DETACH EACH END EXCLUSIVE EXPLAIN FAIL.
%token OR AND NOT IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ.
%token GT LE LT GE ESCAPE.
// The following directive causes tokens ABORT, AFTER, ASC, etc. to
// fallback to ID if they will not parse as their original value.
// This obviates the need for the "id" nonterminal.
//
%fallback ID
ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST COLUMNKW
CONFLICT DATABASE DEFERRED DESC DETACH DO DUPLICATE
EACH END EXCLUSIVE EXPLAIN FAIL FOR
IGNORE IMMEDIATE INITIALLY INSTEAD LIKE_KW MATCH NO PLAN
QUERY KEY OF OFFSET PRAGMA RAISE RECURSIVE RELEASE REPLACE RESTRICT ROW
ROLLBACK SAVEPOINT TEMP TRIGGER VACUUM VIEW VIRTUAL WITH WITHOUT
%ifdef SQLITE_OMIT_COMPOUND_SELECT
EXCEPT INTERSECT UNION
%endif SQLITE_OMIT_COMPOUND_SELECT
REINDEX RENAME CTIME_KW IF
.
%wildcard ANY.
// Define operator precedence early so that this is the first occurrence
// of the operator tokens in the grammer. Keeping the operators together
// causes them to be assigned integer values that are close together,
// which keeps parser tables smaller.
//
// The token values assigned to these symbols is determined by the order
// in which lemon first sees them. It must be the case that ISNULL/NOTNULL,
// NE/EQ, GT/LE, and GE/LT are separated by only a single value. See
// the sqlite3ExprIfFalse() routine for additional information on this
// constraint.
//
%left OR.
%left AND.
%right NOT.
%left IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ.
%left GT LE LT GE.
%right ESCAPE.
%left BITAND BITOR LSHIFT RSHIFT.
%left PLUS MINUS.
%left STAR SLASH REM.
%left CONCAT.
%left COLLATE.
%right BITNOT.
%nonassoc ON.
// An IDENTIFIER can be a generic identifier, or one of several
// keywords. Any non-standard keyword can also be an identifier.
//
%token_class id ID|INDEXED.
// And "ids" is an identifer-or-string.
//
%token_class ids ID|STRING.
// The name of a column or table can be any of the following:
//
%type nm {Token}
nm(A) ::= id(A).
nm(A) ::= STRING(A).
nm(A) ::= JOIN_KW(A).
// A typetoken is really zero or more tokens that form a type name such
// as can be found after the column name in a CREATE TABLE statement.
// Multiple tokens are concatenated to form the value of the typetoken.
//
%type typetoken {Token}
typetoken(A) ::= . {A.n = 0; A.z = 0;}
typetoken(A) ::= typename(A).
typetoken(A) ::= typename(A) LP signed RP(Y). {
A.n = (int)(&Y.z[Y.n] - A.z);
}
typetoken(A) ::= typename(A) LP signed COMMA signed RP(Y). {
A.n = (int)(&Y.z[Y.n] - A.z);
}
%type typename {Token}
typename(A) ::= ids(A).
typename(A) ::= typename(A) ids(Y). {A.n=Y.n+(int)(Y.z-A.z);}
signed ::= plus_num.
signed ::= minus_num.
// The scanpt non-terminal takes a value which is a pointer to the
// input text just past the last token that has been shifted into
// the parser. By surrounding some phrase in the grammar with two
// scanpt non-terminals, we can capture the input text for that phrase.
// For example:
//
// something ::= .... scanpt(A) phrase scanpt(Z).
//
// The text that is parsed as "phrase" is a string starting at A
// and containing (int)(Z-A) characters. There might be some extra
// whitespace on either end of the text, but that can be removed in
// post-processing, if needed.
//
%type scanpt {const char*}
scanpt(A) ::= . {
assert( yyLookahead!=YYNOCODE );
A = yyLookaheadToken.z;
}
// "carglist" is a list of additional constraints that come after the
// column name and column type in a CREATE TABLE statement.
//
carglist ::= carglist ccons.
carglist ::= .
ccons ::= CONSTRAINT nm(X). {pParse->constraintName = X;}
ccons ::= DEFAULT scanpt(A) term(X) scanpt(Z).
{sqlite3AddDefaultValue(pParse,X,A,Z);}
ccons ::= DEFAULT LP(A) expr(X) RP(Z).
{sqlite3AddDefaultValue(pParse,X,A.z+1,Z.z);}
ccons ::= DEFAULT PLUS(A) term(X) scanpt(Z).
{sqlite3AddDefaultValue(pParse,X,A.z,Z);}
ccons ::= DEFAULT MINUS(A) term(X) scanpt(Z). {
Expr *p = sqlite3PExpr(pParse, TK_UMINUS, X, 0);
sqlite3AddDefaultValue(pParse,p,A.z,Z);
}
ccons ::= DEFAULT scanpt id(X). {
Expr *p = tokenExpr(pParse, TK_STRING, X);
if( p ){
sqlite3ExprIdToTrueFalse(p);
testcase( p->op==TK_TRUEFALSE && sqlite3ExprTruthValue(p) );
}
sqlite3AddDefaultValue(pParse,p,X.z,X.z+X.n);
}
// In addition to the type name, we also care about the primary key and
// UNIQUE constraints.
//
ccons ::= NULL onconf.
ccons ::= NOT NULL onconf(R). {sqlite3AddNotNull(pParse, R);}
ccons ::= PRIMARY KEY sortorder(Z) onconf(R) autoinc(I).
{sqlite3AddPrimaryKey(pParse,0,R,I,Z);}
ccons ::= UNIQUE onconf(R). {sqlite3CreateIndex(pParse,0,0,0,0,R,0,0,0,0,
SQLITE_IDXTYPE_UNIQUE);}
ccons ::= CHECK LP expr(X) RP. {sqlite3AddCheckConstraint(pParse,X);}
ccons ::= REFERENCES nm(T) eidlist_opt(TA) refargs(R).
{sqlite3CreateForeignKey(pParse,0,&T,TA,R);}
ccons ::= defer_subclause(D). {sqlite3DeferForeignKey(pParse,D);}
ccons ::= COLLATE ids(C). {sqlite3AddCollateType(pParse, &C);}
// The optional AUTOINCREMENT keyword
%type autoinc {int}
autoinc(X) ::= . {X = 0;}
autoinc(X) ::= AUTOINCR. {X = 1;}
// The next group of rules parses the arguments to a REFERENCES clause
// that determine if the referential integrity checking is deferred or
// or immediate and which determine what action to take if a ref-integ
// check fails.
//
%type refargs {int}
refargs(A) ::= . { A = OE_None*0x0101; /* EV: R-19803-45884 */}
refargs(A) ::= refargs(A) refarg(Y). { A = (A & ~Y.mask) | Y.value; }
%type refarg {struct {int value; int mask;}}
refarg(A) ::= MATCH nm. { A.value = 0; A.mask = 0x000000; }
refarg(A) ::= ON INSERT refact. { A.value = 0; A.mask = 0x000000; }
refarg(A) ::= ON DELETE refact(X). { A.value = X; A.mask = 0x0000ff; }
refarg(A) ::= ON UPDATE refact(X). { A.value = X<<8; A.mask = 0x00ff00; }
%type refact {int}
refact(A) ::= SET NULL. { A = OE_SetNull; /* EV: R-33326-45252 */}
refact(A) ::= SET DEFAULT. { A = OE_SetDflt; /* EV: R-33326-45252 */}
refact(A) ::= CASCADE. { A = OE_Cascade; /* EV: R-33326-45252 */}
refact(A) ::= RESTRICT. { A = OE_Restrict; /* EV: R-33326-45252 */}
refact(A) ::= NO ACTION. { A = OE_None; /* EV: R-33326-45252 */}
%type defer_subclause {int}
defer_subclause(A) ::= NOT DEFERRABLE init_deferred_pred_opt. {A = 0;}
defer_subclause(A) ::= DEFERRABLE init_deferred_pred_opt(X). {A = X;}
%type init_deferred_pred_opt {int}
init_deferred_pred_opt(A) ::= . {A = 0;}
init_deferred_pred_opt(A) ::= INITIALLY DEFERRED. {A = 1;}
init_deferred_pred_opt(A) ::= INITIALLY IMMEDIATE. {A = 0;}
conslist_opt(A) ::= . {A.n = 0; A.z = 0;}
conslist_opt(A) ::= COMMA(A) conslist.
conslist ::= conslist tconscomma tcons.
conslist ::= tcons.
tconscomma ::= COMMA. {pParse->constraintName.n = 0;}
tconscomma ::= .
tcons ::= CONSTRAINT nm(X). {pParse->constraintName = X;}
tcons ::= PRIMARY KEY LP sortlist(X) autoinc(I) RP onconf(R).
{sqlite3AddPrimaryKey(pParse,X,R,I,0);}
tcons ::= UNIQUE LP sortlist(X) RP onconf(R).
{sqlite3CreateIndex(pParse,0,0,0,X,R,0,0,0,0,
SQLITE_IDXTYPE_UNIQUE);}
tcons ::= CHECK LP expr(E) RP onconf.
{sqlite3AddCheckConstraint(pParse,E);}
tcons ::= FOREIGN KEY LP eidlist(FA) RP
REFERENCES nm(T) eidlist_opt(TA) refargs(R) defer_subclause_opt(D). {
sqlite3CreateForeignKey(pParse, FA, &T, TA, R);
sqlite3DeferForeignKey(pParse, D);
}
%type defer_subclause_opt {int}
defer_subclause_opt(A) ::= . {A = 0;}
defer_subclause_opt(A) ::= defer_subclause(A).
// The following is a non-standard extension that allows us to declare the
// default behavior when there is a constraint conflict.
//
%type onconf {int}
%type orconf {int}
%type resolvetype {int}
onconf(A) ::= . {A = OE_Default;}
onconf(A) ::= ON CONFLICT resolvetype(X). {A = X;}
orconf(A) ::= . {A = OE_Default;}
orconf(A) ::= OR resolvetype(X). {A = X;}
resolvetype(A) ::= raisetype(A).
resolvetype(A) ::= IGNORE. {A = OE_Ignore;}
resolvetype(A) ::= REPLACE. {A = OE_Replace;}
////////////////////////// The DROP TABLE /////////////////////////////////////
//
cmd ::= DROP TABLE ifexists(E) fullname(X). {
sqlite3DropTable(pParse, X, 0, E);
}
%type ifexists {int}
ifexists(A) ::= IF EXISTS. {A = 1;}
ifexists(A) ::= . {A = 0;}
///////////////////// The CREATE VIEW statement /////////////////////////////
//
%ifndef SQLITE_OMIT_VIEW
cmd ::= createkw(X) temp(T) VIEW ifnotexists(E) nm(Y) dbnm(Z) eidlist_opt(C)
AS select(S). {
sqlite3CreateView(pParse, &X, &Y, &Z, C, S, T, E);
}
cmd ::= DROP VIEW ifexists(E) fullname(X). {
sqlite3DropTable(pParse, X, 1, E);
}
%endif SQLITE_OMIT_VIEW
//////////////////////// The SELECT statement /////////////////////////////////
//
cmd ::= select(X). {
SelectDest dest = {SRT_Output, 0, 0, 0, 0, 0};
sqlite3Select(pParse, X, &dest);
sqlite3SelectDelete(pParse->db, X);
}
%type select {Select*}
%destructor select {sqlite3SelectDelete(pParse->db, $$);}
%type selectnowith {Select*}
%destructor selectnowith {sqlite3SelectDelete(pParse->db, $$);}
%type oneselect {Select*}
%destructor oneselect {sqlite3SelectDelete(pParse->db, $$);}
%include {
/*
** For a compound SELECT statement, make sure p->pPrior->pNext==p for
** all elements in the list. And make sure list length does not exceed
** SQLITE_LIMIT_COMPOUND_SELECT.
*/
static void parserDoubleLinkSelect(Parse *pParse, Select *p){
if( p->pPrior ){
Select *pNext = 0, *pLoop;
int mxSelect, cnt = 0;
for(pLoop=p; pLoop; pNext=pLoop, pLoop=pLoop->pPrior, cnt++){
pLoop->pNext = pNext;
pLoop->selFlags |= SF_Compound;
}
if( (p->selFlags & SF_MultiValue)==0 &&
(mxSelect = pParse->db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT])>0 &&
cnt>mxSelect
){
sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
}
}
}
}
select(A) ::= WITH wqlist(W) selectnowith(X). {
Select *p = X;
if( p ){
p->pWith = W;
parserDoubleLinkSelect(pParse, p);
}else{
sqlite3WithDelete(pParse->db, W);
}
A = p;
}
select(A) ::= WITH RECURSIVE wqlist(W) selectnowith(X). {
Select *p = X;
if( p ){
p->pWith = W;
parserDoubleLinkSelect(pParse, p);
}else{
sqlite3WithDelete(pParse->db, W);
}
A = p;
}
select(A) ::= selectnowith(X). {
Select *p = X;
if( p ){
parserDoubleLinkSelect(pParse, p);
}
A = p; /*A-overwrites-X*/
}
selectnowith(A) ::= oneselect(A).
%ifndef SQLITE_OMIT_COMPOUND_SELECT
selectnowith(A) ::= selectnowith(A) multiselect_op(Y) oneselect(Z). {
Select *pRhs = Z;
Select *pLhs = A;
if( pRhs && pRhs->pPrior ){
SrcList *pFrom;
Token x;
x.n = 0;
parserDoubleLinkSelect(pParse, pRhs);
pFrom = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&x,pRhs,0,0);
pRhs = sqlite3SelectNew(pParse,0,pFrom,0,0,0,0,0,0);
}
if( pRhs ){
pRhs->op = (u8)Y;
pRhs->pPrior = pLhs;
if( ALWAYS(pLhs) ) pLhs->selFlags &= ~SF_MultiValue;
pRhs->selFlags &= ~SF_MultiValue;
if( Y!=TK_ALL ) pParse->hasCompound = 1;
}else{
sqlite3SelectDelete(pParse->db, pLhs);
}
A = pRhs;
}
%type multiselect_op {int}
multiselect_op(A) ::= UNION(OP). {A = @OP; /*A-overwrites-OP*/}
multiselect_op(A) ::= UNION ALL. {A = TK_ALL;}
multiselect_op(A) ::= EXCEPT|INTERSECT(OP). {A = @OP; /*A-overwrites-OP*/}
%endif SQLITE_OMIT_COMPOUND_SELECT
oneselect(A) ::= SELECT(S) distinct(D) selcollist(W) from(X) where_opt(Y)
groupby_opt(P) having_opt(Q) orderby_opt(Z) limit_opt(L). {
#if SELECTTRACE_ENABLED
Token s = S; /*A-overwrites-S*/
#endif
A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L);
#if SELECTTRACE_ENABLED
/* Populate the Select.zSelName[] string that is used to help with
** query planner debugging, to differentiate between multiple Select
** objects in a complex query.
**
** If the SELECT keyword is immediately followed by a C-style comment
** then extract the first few alphanumeric characters from within that
** comment to be the zSelName value. Otherwise, the label is #N where
** is an integer that is incremented with each SELECT statement seen.
*/
if( A!=0 ){
const char *z = s.z+6;
int i;
sqlite3_snprintf(sizeof(A->zSelName), A->zSelName,"#%d",++pParse->nSelect);
while( z[0]==' ' ) z++;
if( z[0]=='/' && z[1]=='*' ){
z += 2;
while( z[0]==' ' ) z++;
for(i=0; sqlite3Isalnum(z[i]); i++){}
sqlite3_snprintf(sizeof(A->zSelName), A->zSelName, "%.*s", i, z);
}
}
#endif /* SELECTRACE_ENABLED */
}
oneselect(A) ::= values(A).
%type values {Select*}
%destructor values {sqlite3SelectDelete(pParse->db, $$);}
values(A) ::= VALUES LP nexprlist(X) RP. {
A = sqlite3SelectNew(pParse,X,0,0,0,0,0,SF_Values,0);
}
values(A) ::= values(A) COMMA LP exprlist(Y) RP. {
Select *pRight, *pLeft = A;
pRight = sqlite3SelectNew(pParse,Y,0,0,0,0,0,SF_Values|SF_MultiValue,0);
if( ALWAYS(pLeft) ) pLeft->selFlags &= ~SF_MultiValue;
if( pRight ){
pRight->op = TK_ALL;
pRight->pPrior = pLeft;
A = pRight;
}else{
A = pLeft;
}
}
// The "distinct" nonterminal is true (1) if the DISTINCT keyword is
// present and false (0) if it is not.
//
%type distinct {int}
distinct(A) ::= DISTINCT. {A = SF_Distinct;}
distinct(A) ::= ALL. {A = SF_All;}
distinct(A) ::= . {A = 0;}
// selcollist is a list of expressions that are to become the return
// values of the SELECT statement. The "*" in statements like
// "SELECT * FROM ..." is encoded as a special expression with an
// opcode of TK_ASTERISK.
//
%type selcollist {ExprList*}
%destructor selcollist {sqlite3ExprListDelete(pParse->db, $$);}
%type sclp {ExprList*}
%destructor sclp {sqlite3ExprListDelete(pParse->db, $$);}
sclp(A) ::= selcollist(A) COMMA.
sclp(A) ::= . {A = 0;}
selcollist(A) ::= sclp(A) scanpt(B) expr(X) scanpt(Z) as(Y). {
A = sqlite3ExprListAppend(pParse, A, X);
if( Y.n>0 ) sqlite3ExprListSetName(pParse, A, &Y, 1);
sqlite3ExprListSetSpan(pParse,A,B,Z);
}
selcollist(A) ::= sclp(A) scanpt STAR. {
Expr *p = sqlite3Expr(pParse->db, TK_ASTERISK, 0);
A = sqlite3ExprListAppend(pParse, A, p);
}
selcollist(A) ::= sclp(A) scanpt nm(X) DOT STAR. {
Expr *pRight = sqlite3PExpr(pParse, TK_ASTERISK, 0, 0);
Expr *pLeft = sqlite3ExprAlloc(pParse->db, TK_ID, &X, 1);
Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
A = sqlite3ExprListAppend(pParse,A, pDot);
}
// An option "AS <id>" phrase that can follow one of the expressions that
// define the result set, or one of the tables in the FROM clause.
//
%type as {Token}
as(X) ::= AS nm(Y). {X = Y;}
as(X) ::= ids(X).
as(X) ::= . {X.n = 0; X.z = 0;}
%type seltablist {SrcList*}
%destructor seltablist {sqlite3SrcListDelete(pParse->db, $$);}
%type stl_prefix {SrcList*}
%destructor stl_prefix {sqlite3SrcListDelete(pParse->db, $$);}
%type from {SrcList*}
%destructor from {sqlite3SrcListDelete(pParse->db, $$);}
// A complete FROM clause.
//
from(A) ::= . {A = sqlite3DbMallocZero(pParse->db, sizeof(*A));}
from(A) ::= FROM seltablist(X). {
A = X;
sqlite3SrcListShiftJoinType(A);
}
// "seltablist" is a "Select Table List" - the content of the FROM clause
// in a SELECT statement. "stl_prefix" is a prefix of this list.
//
stl_prefix(A) ::= seltablist(A) joinop(Y). {
if( ALWAYS(A && A->nSrc>0) ) A->a[A->nSrc-1].fg.jointype = (u8)Y;
}
stl_prefix(A) ::= . {A = 0;}
seltablist(A) ::= stl_prefix(A) nm(Y) dbnm(D) as(Z) indexed_opt(I)
on_opt(N) using_opt(U). {
A = sqlite3SrcListAppendFromTerm(pParse,A,&Y,&D,&Z,0,N,U);
sqlite3SrcListIndexedBy(pParse, A, &I);
}
seltablist(A) ::= stl_prefix(A) nm(Y) dbnm(D) LP exprlist(E) RP as(Z)
on_opt(N) using_opt(U). {
A = sqlite3SrcListAppendFromTerm(pParse,A,&Y,&D,&Z,0,N,U);
sqlite3SrcListFuncArgs(pParse, A, E);
}
%ifndef SQLITE_OMIT_SUBQUERY
seltablist(A) ::= stl_prefix(A) LP select(S) RP
as(Z) on_opt(N) using_opt(U). {
A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,S,N,U);
}
seltablist(A) ::= stl_prefix(A) LP seltablist(F) RP
as(Z) on_opt(N) using_opt(U). {
if( A==0 && Z.n==0 && N==0 && U==0 ){
A = F;
}else if( F->nSrc==1 ){
A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,0,N,U);
if( A ){
struct SrcList_item *pNew = &A->a[A->nSrc-1];
struct SrcList_item *pOld = F->a;
pNew->zName = pOld->zName;
pNew->zDatabase = pOld->zDatabase;
pNew->pSelect = pOld->pSelect;
pOld->zName = pOld->zDatabase = 0;
pOld->pSelect = 0;
}
sqlite3SrcListDelete(pParse->db, F);
}else{
Select *pSubquery;
sqlite3SrcListShiftJoinType(F);
pSubquery = sqlite3SelectNew(pParse,0,F,0,0,0,0,SF_NestedFrom,0);
A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,pSubquery,N,U);
}
}
%endif SQLITE_OMIT_SUBQUERY
%type dbnm {Token}
dbnm(A) ::= . {A.z=0; A.n=0;}
dbnm(A) ::= DOT nm(X). {A = X;}
%type fullname {SrcList*}
%destructor fullname {sqlite3SrcListDelete(pParse->db, $$);}
fullname(A) ::= nm(X).
{A = sqlite3SrcListAppend(pParse->db,0,&X,0); /*A-overwrites-X*/}
fullname(A) ::= nm(X) DOT nm(Y).
{A = sqlite3SrcListAppend(pParse->db,0,&X,&Y); /*A-overwrites-X*/}
%type joinop {int}
joinop(X) ::= COMMA|JOIN. { X = JT_INNER; }
joinop(X) ::= JOIN_KW(A) JOIN.
{X = sqlite3JoinType(pParse,&A,0,0); /*X-overwrites-A*/}
joinop(X) ::= JOIN_KW(A) nm(B) JOIN.
{X = sqlite3JoinType(pParse,&A,&B,0); /*X-overwrites-A*/}
joinop(X) ::= JOIN_KW(A) nm(B) nm(C) JOIN.
{X = sqlite3JoinType(pParse,&A,&B,&C);/*X-overwrites-A*/}
// There is a parsing abiguity in an upsert statement that uses a
// SELECT on the RHS of a the INSERT:
//
// INSERT INTO tab SELECT * FROM aaa JOIN bbb ON CONFLICT ...
// here ----^^
//
// When the ON token is encountered, the parser does not know if it is
// the beginning of an ON CONFLICT clause, or the beginning of an ON
// clause associated with the JOIN. The conflict is resolved in favor
// of the JOIN. If an ON CONFLICT clause is intended, insert a dummy
// WHERE clause in between, like this:
//
// INSERT INTO tab SELECT * FROM aaa JOIN bbb WHERE true ON CONFLICT ...
//
// The [AND] and [OR] precedence marks in the rules for on_opt cause the
// ON in this context to always be interpreted as belonging to the JOIN.
//
%type on_opt {Expr*}
%destructor on_opt {sqlite3ExprDelete(pParse->db, $$);}
on_opt(N) ::= ON expr(E). {N = E;}
on_opt(N) ::= . [OR] {N = 0;}
// Note that this block abuses the Token type just a little. If there is
// no "INDEXED BY" clause, the returned token is empty (z==0 && n==0). If
// there is an INDEXED BY clause, then the token is populated as per normal,
// with z pointing to the token data and n containing the number of bytes
// in the token.
//
// If there is a "NOT INDEXED" clause, then (z==0 && n==1), which is
// normally illegal. The sqlite3SrcListIndexedBy() function
// recognizes and interprets this as a special case.
//
%type indexed_opt {Token}
indexed_opt(A) ::= . {A.z=0; A.n=0;}
indexed_opt(A) ::= INDEXED BY nm(X). {A = X;}
indexed_opt(A) ::= NOT INDEXED. {A.z=0; A.n=1;}
%type using_opt {IdList*}
%destructor using_opt {sqlite3IdListDelete(pParse->db, $$);}
using_opt(U) ::= USING LP idlist(L) RP. {U = L;}
using_opt(U) ::= . {U = 0;}
%type orderby_opt {ExprList*}
%destructor orderby_opt {sqlite3ExprListDelete(pParse->db, $$);}
// the sortlist non-terminal stores a list of expression where each
// expression is optionally followed by ASC or DESC to indicate the
// sort order.
//
%type sortlist {ExprList*}
%destructor sortlist {sqlite3ExprListDelete(pParse->db, $$);}
orderby_opt(A) ::= . {A = 0;}
orderby_opt(A) ::= ORDER BY sortlist(X). {A = X;}
sortlist(A) ::= sortlist(A) COMMA expr(Y) sortorder(Z). {
A = sqlite3ExprListAppend(pParse,A,Y);
sqlite3ExprListSetSortOrder(A,Z);
}
sortlist(A) ::= expr(Y) sortorder(Z). {
A = sqlite3ExprListAppend(pParse,0,Y); /*A-overwrites-Y*/
sqlite3ExprListSetSortOrder(A,Z);
}
%type sortorder {int}
sortorder(A) ::= ASC. {A = SQLITE_SO_ASC;}
sortorder(A) ::= DESC. {A = SQLITE_SO_DESC;}
sortorder(A) ::= . {A = SQLITE_SO_UNDEFINED;}
%type groupby_opt {ExprList*}
%destructor groupby_opt {sqlite3ExprListDelete(pParse->db, $$);}
groupby_opt(A) ::= . {A = 0;}
groupby_opt(A) ::= GROUP BY nexprlist(X). {A = X;}
%type having_opt {Expr*}
%destructor having_opt {sqlite3ExprDelete(pParse->db, $$);}
having_opt(A) ::= . {A = 0;}
having_opt(A) ::= HAVING expr(X). {A = X;}
%type limit_opt {Expr*}
// The destructor for limit_opt will never fire in the current grammar.
// The limit_opt non-terminal only occurs at the end of a single production
// rule for SELECT statements. As soon as the rule that create the
// limit_opt non-terminal reduces, the SELECT statement rule will also
// reduce. So there is never a limit_opt non-terminal on the stack
// except as a transient. So there is never anything to destroy.
//
//%destructor limit_opt {sqlite3ExprDelete(pParse->db, $$);}
limit_opt(A) ::= . {A = 0;}
limit_opt(A) ::= LIMIT expr(X).
{A = sqlite3PExpr(pParse,TK_LIMIT,X,0);}
limit_opt(A) ::= LIMIT expr(X) OFFSET expr(Y).
{A = sqlite3PExpr(pParse,TK_LIMIT,X,Y);}
limit_opt(A) ::= LIMIT expr(X) COMMA expr(Y).
{A = sqlite3PExpr(pParse,TK_LIMIT,Y,X);}
/////////////////////////// The DELETE statement /////////////////////////////
//
%ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
cmd ::= with DELETE FROM fullname(X) indexed_opt(I) where_opt(W)
orderby_opt(O) limit_opt(L). {
sqlite3SrcListIndexedBy(pParse, X, &I);
sqlite3DeleteFrom(pParse,X,W,O,L);
}
%endif
%ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
cmd ::= with DELETE FROM fullname(X) indexed_opt(I) where_opt(W). {
sqlite3SrcListIndexedBy(pParse, X, &I);
sqlite3DeleteFrom(pParse,X,W,0,0);
}
%endif
%type where_opt {Expr*}
%destructor where_opt {sqlite3ExprDelete(pParse->db, $$);}
where_opt(A) ::= . {A = 0;}
where_opt(A) ::= WHERE expr(X). {A = X;}
////////////////////////// The UPDATE command ////////////////////////////////
//
%ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
cmd ::= with UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y)
where_opt(W) orderby_opt(O) limit_opt(L). {
sqlite3SrcListIndexedBy(pParse, X, &I);
sqlite3ExprListCheckLength(pParse,Y,"set list");
sqlite3Update(pParse,X,Y,W,R,O,L);
}
%endif
%ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
cmd ::= with UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y)
where_opt(W). {
sqlite3SrcListIndexedBy(pParse, X, &I);
sqlite3ExprListCheckLength(pParse,Y,"set list");
sqlite3Update(pParse,X,Y,W,R,0,0);
}
%endif
%type setlist {ExprList*}
%destructor setlist {sqlite3ExprListDelete(pParse->db, $$);}
setlist(A) ::= setlist(A) COMMA nm(X) EQ expr(Y). {
A = sqlite3ExprListAppend(pParse, A, Y);
sqlite3ExprListSetName(pParse, A, &X, 1);
}
setlist(A) ::= setlist(A) COMMA LP idlist(X) RP EQ expr(Y). {
A = sqlite3ExprListAppendVector(pParse, A, X, Y);
}
setlist(A) ::= nm(X) EQ expr(Y). {
A = sqlite3ExprListAppend(pParse, 0, Y);
sqlite3ExprListSetName(pParse, A, &X, 1);
}
setlist(A) ::= LP idlist(X) RP EQ expr(Y). {
A = sqlite3ExprListAppendVector(pParse, 0, X, Y);
}
////////////////////////// The INSERT command /////////////////////////////////
//
cmd ::= with insert_cmd(R) INTO fullname(X) idlist_opt(F) select(S)
upsert(U). {
sqlite3Insert(pParse, X, S, F, R, U);
}
cmd ::= with insert_cmd(R) INTO fullname(X) idlist_opt(F) DEFAULT VALUES.
{
sqlite3Insert(pParse, X, 0, F, R, 0);
}
%type upsert {Upsert*}
%destructor upsert {sqlite3UpsertDelete(pParse->db,$$);}
upsert(A) ::= . { A = 0; }
upsert(A) ::= upsert(X) ON CONFLICT LP sortlist(Y) RP
DO UPDATE SET setlist(Z) where_opt(W).
{ A = sqlite3UpsertNew(pParse->db,X,Y,Z,W); /*X-overwrites-A*/ }
upsert(A) ::= upsert(X) ON DUPLICATE KEY UPDATE setlist(Z) where_opt(W).
{ A = sqlite3UpsertNew(pParse->db,X,0,Z,W); /*X-overwrites-A*/ }
upsert(A) ::= upsert(X) ON CONFLICT LP sortlist(Y) RP DO NOTHING.
{ A = sqlite3UpsertNew(pParse->db,X,Y,0,0); /*X-overwrites-A*/ }
upsert(A) ::= upsert(X) ON CONFLICT DO NOTHING.
{ A = sqlite3UpsertNew(pParse->db,X,0,0,0); /*X-overwrites-A*/ }
%type insert_cmd {int}
insert_cmd(A) ::= INSERT orconf(R). {A = R;}
insert_cmd(A) ::= REPLACE. {A = OE_Replace;}
%type idlist_opt {IdList*}
%destructor idlist_opt {sqlite3IdListDelete(pParse->db, $$);}
%type idlist {IdList*}
%destructor idlist {sqlite3IdListDelete(pParse->db, $$);}
idlist_opt(A) ::= . {A = 0;}
idlist_opt(A) ::= LP idlist(X) RP. {A = X;}
idlist(A) ::= idlist(A) COMMA nm(Y).
{A = sqlite3IdListAppend(pParse->db,A,&Y);}
idlist(A) ::= nm(Y).
{A = sqlite3IdListAppend(pParse->db,0,&Y); /*A-overwrites-Y*/}
/////////////////////////// Expression Processing /////////////////////////////
//
%type expr {Expr*}
%destructor expr {sqlite3ExprDelete(pParse->db, $$);}
%type term {Expr*}
%destructor term {sqlite3ExprDelete(pParse->db, $$);}
%include {
/* Construct a new Expr object from a single identifier. Use the
** new Expr to populate pOut. Set the span of pOut to be the identifier
** that created the expression.
*/
static Expr *tokenExpr(Parse *pParse, int op, Token t){
Expr *p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)+t.n+1);
if( p ){
memset(p, 0, sizeof(Expr));
p->op = (u8)op;
p->flags = EP_Leaf;
p->iAgg = -1;
p->u.zToken = (char*)&p[1];
memcpy(p->u.zToken, t.z, t.n);
p->u.zToken[t.n] = 0;
if( sqlite3Isquote(p->u.zToken[0]) ){
if( p->u.zToken[0]=='"' ) p->flags |= EP_DblQuoted;
sqlite3Dequote(p->u.zToken);
}
#if SQLITE_MAX_EXPR_DEPTH>0
p->nHeight = 1;
#endif
}
return p;
}
}
expr(A) ::= term(A).
expr(A) ::= LP expr(X) RP. {A = X;}
expr(A) ::= id(X). {A=tokenExpr(pParse,TK_ID,X); /*A-overwrites-X*/}
expr(A) ::= JOIN_KW(X). {A=tokenExpr(pParse,TK_ID,X); /*A-overwrites-X*/}
expr(A) ::= nm(X) DOT nm(Y). {
Expr *temp1 = sqlite3ExprAlloc(pParse->db, TK_ID, &X, 1);
Expr *temp2 = sqlite3ExprAlloc(pParse->db, TK_ID, &Y, 1);
A = sqlite3PExpr(pParse, TK_DOT, temp1, temp2);
}
expr(A) ::= nm(X) DOT nm(Y) DOT nm(Z). {
Expr *temp1 = sqlite3ExprAlloc(pParse->db, TK_ID, &X, 1);
Expr *temp2 = sqlite3ExprAlloc(pParse->db, TK_ID, &Y, 1);
Expr *temp3 = sqlite3ExprAlloc(pParse->db, TK_ID, &Z, 1);
Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3);
A = sqlite3PExpr(pParse, TK_DOT, temp1, temp4);
}
term(A) ::= NULL|FLOAT|BLOB(X). {A=tokenExpr(pParse,@X,X); /*A-overwrites-X*/}
term(A) ::= STRING(X). {A=tokenExpr(pParse,@X,X); /*A-overwrites-X*/}
term(A) ::= INTEGER(X). {
A = sqlite3ExprAlloc(pParse->db, TK_INTEGER, &X, 1);
}
expr(A) ::= VARIABLE(X). {
if( !(X.z[0]=='#' && sqlite3Isdigit(X.z[1])) ){
u32 n = X.n;
A = tokenExpr(pParse, TK_VARIABLE, X);
sqlite3ExprAssignVarNumber(pParse, A, n);
}else{
/* When doing a nested parse, one can include terms in an expression
** that look like this: #1 #2 ... These terms refer to registers
** in the virtual machine. #N is the N-th register. */
Token t = X; /*A-overwrites-X*/
assert( t.n>=2 );
if( pParse->nested==0 ){
sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &t);
A = 0;
}else{
A = sqlite3PExpr(pParse, TK_REGISTER, 0, 0);
if( A ) sqlite3GetInt32(&t.z[1], &A->iTable);
}
}
}
expr(A) ::= expr(A) COLLATE ids(C). {
A = sqlite3ExprAddCollateToken(pParse, A, &C, 1);
}
%ifndef SQLITE_OMIT_CAST
expr(A) ::= CAST LP expr(E) AS typetoken(T) RP. {
A = sqlite3ExprAlloc(pParse->db, TK_CAST, &T, 1);
sqlite3ExprAttachSubtrees(pParse->db, A, E, 0);
}
%endif SQLITE_OMIT_CAST
expr(A) ::= id(X) LP distinct(D) exprlist(Y) RP. {
if( Y && Y->nExpr>pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){
sqlite3ErrorMsg(pParse, "too many arguments on function %T", &X);
}
A = sqlite3ExprFunction(pParse, Y, &X);
if( D==SF_Distinct && A ){
A->flags |= EP_Distinct;
}
}
expr(A) ::= id(X) LP STAR RP. {
A = sqlite3ExprFunction(pParse, 0, &X);
}
term(A) ::= CTIME_KW(OP). {
A = sqlite3ExprFunction(pParse, 0, &OP);
}