forked from ming024/FastSpeech2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
224 lines (185 loc) · 11.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import numpy as np
import argparse
import os
import time
from fastspeech2 import FastSpeech2
from loss import FastSpeech2Loss
from dataset import Dataset
from optimizer import ScheduledOptim
from evaluate import evaluate
import hparams as hp
import utils
import audio as Audio
import waveglow
def main(args):
torch.manual_seed(0)
# Get device
device = torch.device('cuda'if torch.cuda.is_available()else 'cpu')
# Get dataset
dataset = Dataset("train.txt")
loader = DataLoader(dataset, batch_size=hp.batch_size**2, shuffle=True,
collate_fn=dataset.collate_fn, drop_last=True, num_workers=0)
# Define model
model = nn.DataParallel(FastSpeech2()).to(device)
print("Model Has Been Defined")
num_param = utils.get_param_num(model)
print('Number of FastSpeech2 Parameters:', num_param)
# Optimizer and loss
optimizer = torch.optim.Adam(model.parameters(), betas=hp.betas, eps=hp.eps, weight_decay = hp.weight_decay)
scheduled_optim = ScheduledOptim(optimizer, hp.decoder_hidden, hp.n_warm_up_step, args.restore_step)
Loss = FastSpeech2Loss().to(device)
print("Optimizer and Loss Function Defined.")
# Load checkpoint if exists
checkpoint_path = os.path.join(hp.checkpoint_path)
try:
checkpoint = torch.load(os.path.join(
checkpoint_path, 'checkpoint_{}.pth.tar'.format(args.restore_step)))
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("\n---Model Restored at Step {}---\n".format(args.restore_step))
except:
print("\n---Start New Training---\n")
if not os.path.exists(checkpoint_path):
os.makedirs(checkpoint_path)
# Load vocoder
wave_glow = utils.get_WaveGlow()
# Init logger
log_path = hp.log_path
if not os.path.exists(log_path):
os.makedirs(log_path)
logger = SummaryWriter(log_path)
# Init synthesis directory
synth_path = hp.synth_path
if not os.path.exists(synth_path):
os.makedirs(synth_path)
# Define Some Information
Time = np.array([])
Start = time.perf_counter()
# Training
model = model.train()
for epoch in range(hp.epochs):
# Get Training Loader
total_step = hp.epochs * len(loader) * hp.batch_size
for i, batchs in enumerate(loader):
for j, data_of_batch in enumerate(batchs):
start_time = time.perf_counter()
current_step = i*hp.batch_size + j + args.restore_step + epoch*len(loader)*hp.batch_size + 1
# Init
scheduled_optim.zero_grad()
# Get Data
text = torch.from_numpy(data_of_batch["text"]).long().to(device)
mel_target = torch.from_numpy(data_of_batch["mel_target"]).float().to(device)
D = torch.from_numpy(data_of_batch["D"]).int().to(device)
f0 = torch.from_numpy(data_of_batch["f0"]).float().to(device)
energy = torch.from_numpy(data_of_batch["energy"]).float().to(device)
mel_pos = torch.from_numpy(data_of_batch["mel_pos"]).long().to(device)
src_pos = torch.from_numpy(data_of_batch["src_pos"]).long().to(device)
src_len = torch.from_numpy(data_of_batch["src_len"]).long().to(device)
mel_len = torch.from_numpy(data_of_batch["mel_len"]).long().to(device)
max_len = max(data_of_batch["mel_len"]).astype(np.int16)
# Forward
mel_output, mel_postnet_output, duration_output, f0_output, energy_output = model(
text, src_pos, mel_pos, max_len, D, f0, energy)
# Cal Loss
mel_loss, mel_postnet_loss, d_loss, f_loss, e_loss = Loss(
duration_output, D, f0_output, f0, energy_output, energy, mel_output, mel_postnet_output, mel_target, src_len, mel_len)
total_loss = mel_loss + mel_postnet_loss + d_loss + f_loss + e_loss
# Logger
t_l = total_loss.item()
m_l = mel_loss.item()
m_p_l = mel_postnet_loss.item()
d_l = d_loss.item()
f_l = f_loss.item()
e_l = e_loss.item()
with open(os.path.join(log_path, "total_loss.txt"), "a") as f_total_loss:
f_total_loss.write(str(t_l)+"\n")
with open(os.path.join(log_path, "mel_loss.txt"), "a") as f_mel_loss:
f_mel_loss.write(str(m_l)+"\n")
with open(os.path.join(log_path, "mel_postnet_loss.txt"), "a") as f_mel_postnet_loss:
f_mel_postnet_loss.write(str(m_p_l)+"\n")
with open(os.path.join(log_path, "duration_loss.txt"), "a") as f_d_loss:
f_d_loss.write(str(d_l)+"\n")
with open(os.path.join(log_path, "f0_loss.txt"), "a") as f_f_loss:
f_f_loss.write(str(f_l)+"\n")
with open(os.path.join(log_path, "energy_loss.txt"), "a") as f_e_loss:
f_e_loss.write(str(e_l)+"\n")
# Backward
total_loss.backward()
# Clipping gradients to avoid gradient explosion
nn.utils.clip_grad_norm_(model.parameters(), hp.grad_clip_thresh)
# Update weights
scheduled_optim.step_and_update_lr()
# Print
if current_step % hp.log_step == 0:
Now = time.perf_counter()
str1 = "Epoch [{}/{}], Step [{}/{}]:".format(
epoch+1, hp.epochs, current_step, total_step)
str2 = "Total Loss: {:.4f}, Mel Loss: {:.4f}, Mel PostNet Loss: {:.4f}, Duration Loss: {:.4f}, F0 Loss: {:.4f}, Energy Loss: {:.4f};".format(
t_l, m_l, m_p_l, d_l, f_l, e_l)
str3 = "Time Used: {:.3f}s, Estimated Time Remaining: {:.3f}s.".format(
(Now-Start), (total_step-current_step)*np.mean(Time))
print("\n" + str1)
print(str2)
print(str3)
with open(os.path.join(log_path, "log.txt"), "a") as f_log:
f_log.write(str1 + "\n")
f_log.write(str2 + "\n")
f_log.write(str3 + "\n")
f_log.write("\n")
logger.add_scalars('Loss/total_loss', {'training': t_l}, current_step)
logger.add_scalars('Loss/mel_loss', {'training': m_l}, current_step)
logger.add_scalars('Loss/mel_postnet_loss', {'training': m_p_l}, current_step)
logger.add_scalars('Loss/duration_loss', {'training': d_l}, current_step)
logger.add_scalars('Loss/F0_loss', {'training': f_l}, current_step)
logger.add_scalars('Loss/energy_loss', {'training': e_l}, current_step)
if current_step % hp.save_step == 0:
torch.save({'model': model.state_dict(), 'optimizer': optimizer.state_dict(
)}, os.path.join(checkpoint_path, 'checkpoint_{}.pth.tar'.format(current_step)))
print("save model at step {} ...".format(current_step))
if current_step % hp.synth_step == 0:
length = mel_len[0].item()
mel_target_torch = mel_target[0, :length].detach().unsqueeze(0).transpose(1, 2)
mel_target = mel_target[0, :length].detach().cpu().transpose(0, 1)
mel_torch = mel_output[0, :length].detach().unsqueeze(0).transpose(1, 2)
mel = mel_output[0, :length].detach().cpu().transpose(0, 1)
mel_postnet_torch = mel_postnet_output[0, :length].detach().unsqueeze(0).transpose(1, 2)
mel_postnet = mel_postnet_output[0, :length].detach().cpu().transpose(0, 1)
Audio.tools.inv_mel_spec(mel, os.path.join(synth_path, "step_{}_griffin_lim.wav".format(current_step)))
Audio.tools.inv_mel_spec(mel_postnet, os.path.join(synth_path, "step_{}_postnet_griffin_lim.wav".format(current_step)))
waveglow.inference.inference(mel_torch, wave_glow, os.path.join(synth_path, "step_{}_waveglow.wav".format(current_step)))
waveglow.inference.inference(mel_postnet_torch, wave_glow, os.path.join(synth_path, "step_{}_postnet_waveglow.wav".format(current_step)))
waveglow.inference.inference(mel_target_torch, wave_glow, os.path.join(synth_path, "step_{}_ground-truth_waveglow.wav".format(current_step)))
f0 = f0[0, :length].detach().cpu().numpy()
energy = energy[0, :length].detach().cpu().numpy()
f0_output = f0_output[0, :length].detach().cpu().numpy()
energy_output = energy_output[0, :length].detach().cpu().numpy()
utils.plot_data([(mel_postnet.numpy(), f0_output, energy_output), (mel_target.numpy(), f0, energy)],
['Synthetized Spectrogram', 'Ground-Truth Spectrogram'], filename=os.path.join(synth_path, 'step_{}.png'.format(current_step)))
if current_step % hp.eval_step == 0:
model.eval()
with torch.no_grad():
d_l, f_l, e_l, m_l, m_p_l = evaluate(model, current_step)
t_l = d_l + f_l + e_l + m_l + m_p_l
logger.add_scalars('Loss/total_loss', {'validation': t_l}, current_step)
logger.add_scalars('Loss/mel_loss', {'validation': m_l}, current_step)
logger.add_scalars('Loss/mel_postnet_loss', {'validation': m_p_l}, current_step)
logger.add_scalars('Loss/duration_loss', {'validation': d_l}, current_step)
logger.add_scalars('Loss/F0_loss', {'validation': f_l}, current_step)
logger.add_scalars('Loss/energy_loss', {'validation': e_l}, current_step)
model.train()
end_time = time.perf_counter()
Time = np.append(Time, end_time - start_time)
if len(Time) == hp.clear_Time:
temp_value = np.mean(Time)
Time = np.delete(
Time, [i for i in range(len(Time))], axis=None)
Time = np.append(Time, temp_value)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--restore_step', type=int, default=0)
args = parser.parse_args()
main(args)