forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpartition.py
125 lines (109 loc) · 4.79 KB
/
partition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
# -*- coding: utf-8 -*-
#
# setup.py
#
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from dataloader import get_dataset
import scipy as sp
import numpy as np
import argparse
import os
import dgl
from dgl import backend as F
from dgl.data.utils import load_graphs, save_graphs
def write_txt_graph(path, file_name, part_dict, total_nodes):
partition_book = [0] * total_nodes
for part_id in part_dict:
print('write graph %d...' % part_id)
# Get (h,r,t) triples
partition_path = path + str(part_id)
if not os.path.exists(partition_path):
os.mkdir(partition_path)
triple_file = os.path.join(partition_path, file_name)
f = open(triple_file, 'w')
graph = part_dict[part_id]
src, dst = graph.all_edges(form='uv', order='eid')
rel = graph.edata['tid']
assert len(src) == len(rel)
src = F.asnumpy(src)
dst = F.asnumpy(dst)
rel = F.asnumpy(rel)
for i in range(len(src)):
f.write(str(src[i])+'\t'+str(rel[i])+'\t'+str(dst[i])+'\n')
f.close()
# Get local2global
l2g_file = os.path.join(partition_path, 'local_to_global.txt')
f = open(l2g_file, 'w')
pid = F.asnumpy(graph.parent_nid)
for i in range(len(pid)):
f.write(str(pid[i])+'\n')
f.close()
# Update partition_book
partition = F.asnumpy(graph.ndata['part_id'])
for i in range(len(pid)):
partition_book[pid[i]] = partition[i]
# Write partition_book.txt
for part_id in part_dict:
partition_path = path + str(part_id)
pb_file = os.path.join(partition_path, 'partition_book.txt')
f = open(pb_file, 'w')
for i in range(len(partition_book)):
f.write(str(partition_book[i])+'\n')
f.close()
def main():
parser = argparse.ArgumentParser(description='Partition a knowledge graph')
parser.add_argument('--data_path', type=str, default='data',
help='root path of all dataset')
parser.add_argument('--dataset', type=str, default='FB15k',
help='dataset name, under data_path')
parser.add_argument('--data_files', type=str, default=None, nargs='+',
help='a list of data files, e.g. entity relation train valid test')
parser.add_argument('--format', type=str, default='built_in',
help='the format of the dataset, it can be built_in,'\
'raw_udd_{htr} and udd_{htr}')
parser.add_argument('-k', '--num-parts', required=True, type=int,
help='The number of partitions')
args = parser.parse_args()
num_parts = args.num_parts
print('load dataset..')
# load dataset and samplers
dataset = get_dataset(args.data_path, args.dataset, args.format, args.data_files)
print('construct graph...')
src, etype_id, dst = dataset.train
coo = sp.sparse.coo_matrix((np.ones(len(src)), (src, dst)),
shape=[dataset.n_entities, dataset.n_entities])
g = dgl.DGLGraph(coo, readonly=True, multigraph=True, sort_csr=True)
g.edata['tid'] = F.tensor(etype_id, F.int64)
print('partition graph...')
part_dict = dgl.transform.metis_partition(g, num_parts, 1)
tot_num_inner_edges = 0
for part_id in part_dict:
part = part_dict[part_id]
num_inner_nodes = len(np.nonzero(F.asnumpy(part.ndata['inner_node']))[0])
num_inner_edges = len(np.nonzero(F.asnumpy(part.edata['inner_edge']))[0])
print('part {} has {} nodes and {} edges. {} nodes and {} edges are inside the partition'.format(
part_id, part.number_of_nodes(), part.number_of_edges(),
num_inner_nodes, num_inner_edges))
tot_num_inner_edges += num_inner_edges
part.copy_from_parent()
print('write graph to txt file...')
txt_file_graph = os.path.join(args.data_path, args.dataset)
txt_file_graph = os.path.join(txt_file_graph, 'partition_')
write_txt_graph(txt_file_graph, 'train.txt', part_dict, g.number_of_nodes())
print('there are {} edges in the graph and {} edge cuts for {} partitions.'.format(
g.number_of_edges(), g.number_of_edges() - tot_num_inner_edges, len(part_dict)))
if __name__ == '__main__':
main()