You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Thanks for providing this code. I'd love to use it, but am getting the following error when running the trainer.
(py38_test) [richier@reslnapollo02 transformers_ner]$ python bert_crf_trainer.py
Downloading builder script: 9.52kB [00:00, 8.24MB/s]
Downloading metadata: 3.79kB [00:00, 3.99MB/s]
Reusing dataset conll2003 (/home/richier/.cache/huggingface/datasets/conll2003/conll2003/1.0.0/63f4ebd1bcb7148b1644497336fd74643d4ce70123334431a3c053b7ee4e96ee)
100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 495.17it/s]
Dataset({
features: ['id', 'tokens', 'pos_tags', 'chunk_tags', 'ner_tags'],
num_rows: 14042
}) Dataset({
features: ['id', 'tokens', 'pos_tags', 'chunk_tags', 'ner_tags'],
num_rows: 3454
})
Some weights of the model checkpoint at bert-base-cased were not used when initializing BertCRF: ['cls.predictions.bias', 'cls.seq_relationship.weight', 'cls.predictions.transform.dense.weight', 'cls.predictions.transform.LayerNorm.bias', 'cls.seq_relationship.bias', 'cls.predictions.decoder.weight', 'cls.predictions.transform.dense.bias', 'cls.predictions.transform.LayerNorm.weight']
- This IS expected if you are initializing BertCRF from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing BertCRF from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
Some weights of BertCRF were not initialized from the model checkpoint at bert-base-cased and are newly initialized: ['classifier.weight', 'crf.transitions', 'crf.end_transitions', 'classifier.bias', 'crf.start_transitions']
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
0%| | 0/1 [00:04<?, ?ba/s]
Traceback (most recent call last):
File "bert_crf_trainer.py", line 59, in <module>
train_dataset = train_dataset.map(tokenize, batched=True, batch_size=len(train_dataset))
File "/home/richier/anaconda3/envs/py38_test/lib/python3.8/site-packages/datasets/arrow_dataset.py", line 1955, in map
return self._map_single(
File "/home/richier/anaconda3/envs/py38_test/lib/python3.8/site-packages/datasets/arrow_dataset.py", line 520, in wrapper
out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs)
File "/home/richier/anaconda3/envs/py38_test/lib/python3.8/site-packages/datasets/arrow_dataset.py", line 487, in wrapper
out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs)
File "/home/richier/anaconda3/envs/py38_test/lib/python3.8/site-packages/datasets/fingerprint.py", line 458, in wrapper
out = func(self, *args, **kwargs)
File "/home/richier/anaconda3/envs/py38_test/lib/python3.8/site-packages/datasets/arrow_dataset.py", line 2339, in _map_single
batch = apply_function_on_filtered_inputs(
File "/home/richier/anaconda3/envs/py38_test/lib/python3.8/site-packages/datasets/arrow_dataset.py", line 2220, in apply_function_on_filtered_inputs
processed_inputs = function(*fn_args, *additional_args, **fn_kwargs)
File "/home/richier/anaconda3/envs/py38_test/lib/python3.8/site-packages/datasets/arrow_dataset.py", line 1915, in decorated
result = f(decorated_item, *args, **kwargs)
File "bert_crf_trainer.py", line 24, in tokenize
tokenids = tokenizer(tokens, add_special_tokens=False)
File "/home/richier/anaconda3/envs/py38_test/lib/python3.8/site-packages/transformers/tokenization_utils_base.py", line 2288, in __call__
return self.batch_encode_plus(
File "/home/richier/anaconda3/envs/py38_test/lib/python3.8/site-packages/transformers/tokenization_utils_base.py", line 2473, in batch_encode_plus
return self._batch_encode_plus(
File "/home/richier/anaconda3/envs/py38_test/lib/python3.8/site-packages/transformers/tokenization_utils_fast.py", line 418, in _batch_encode_plus
for key in tokens_and_encodings[0][0].keys():
IndexError: list index out of range
Any idea what's going on?
Unrelatedly, the datasets package must be updated relative to what is in the requirements.txt. See this issue: huggingface/datasets#3582.
The text was updated successfully, but these errors were encountered:
Thanks for providing this code. I'd love to use it, but am getting the following error when running the trainer.
Any idea what's going on?
Unrelatedly, the datasets package must be updated relative to what is in the requirements.txt. See this issue: huggingface/datasets#3582.
The text was updated successfully, but these errors were encountered: