-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
125 lines (95 loc) · 4.36 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import torch
from model import Res18UnetCenterNet
from loss import criterion
from dataset import ToyDataset
from ctdet import ctdet_decode
import matplotlib.pyplot as plt
import numpy as np
import cv2
device = 'cuda' if torch.cuda.is_available() else 'cpu'
def train_model(model, optimizer, dataloader, epoch):
model.train()
running_mask_loss, running_size_loss, running_offset_loss = 0, 0, 0
for batch_idx, (img_batch, mask_batch) in enumerate(dataloader):
img_batch = img_batch.to(device)
mask_batch = mask_batch.to(device)
# center_index = center_index.to(device)
optimizer.zero_grad()
output = model(img_batch)
mask_loss, size_loss, offset_loss = criterion(output, mask_batch)
loss = mask_loss + size_loss + offset_loss
loss.backward()
optimizer.step()
running_mask_loss += mask_loss
running_size_loss += size_loss
running_offset_loss += offset_loss
if batch_idx % 5 == 0:
print(f'\r{running_mask_loss/(batch_idx+1):.3f} {running_size_loss/(batch_idx+1):.3f} {running_offset_loss/(batch_idx+1):.3f}',
end='', flush=True)
print('\r', end='', flush=True)
print(f"Epoch: {epoch} mask_loss: {running_mask_loss/(batch_idx): .3f} "
f"size_loss: {running_size_loss/(batch_idx): .3f} offset_loss: {running_offset_loss/(batch_idx): .3f}")
@torch.no_grad()
def eval_model(model, dataloader, output_folder, epoch=0, thresh=0.25):
for (img_batch, mask_batch) in dataloader:
img_batch = img_batch.to(device)
mask_batch = mask_batch.to(device)
predictions = model(img_batch)
bboxes_raw, bboxes, scores, clses = ctdet_decode(predictions[:, 0:1], predictions[:, -4:-2, :, :],
predictions[:, -2:, :, :])
bboxes = bboxes.long().cpu().numpy()
for batch_idx, (im, mask, pred) in enumerate(zip(img_batch, mask_batch, predictions)):
im = im.permute(1, 2, 0).cpu().squeeze().numpy()*255
im = np.repeat(im[:, :, None], 3, 2)
score_pos = []
for score, bbox, bbox_raw in zip(scores[batch_idx], bboxes[batch_idx], bboxes_raw[batch_idx]):
if score > thresh:
im = np.maximum(im, cv2.rectangle(
im, (bbox[2], bbox[3]), (bbox[0], bbox[1]), (0, 255, 0), 2))
# uncomment to visualize bbox without offset correction
# im = np.maximum(im, cv2.rectangle(
# im, (bbox_raw[2], bbox_raw[3]), (bbox_raw[0], bbox_raw[1]), (255, 0, 0), 2))
score_pos.append((bbox[2]+5, bbox[3]+5, score))
else:
break
plt.subplot(2, 3, 1)
plt.title('Image with pred bbox')
plt.imshow(im.astype(np.int))
for pos_x, pos_y, score in score_pos:
plt.text(pos_x, pos_y, f'{score.item():.2}', fontsize=6, c='r')
plt.subplot(2, 3, 2)
plt.title('Mask')
plt.imshow(mask[0].cpu().squeeze())
plt.subplot(2, 3, 3)
plt.title('Mask Prediction')
plt.imshow(pred[0].cpu().squeeze())
plt.subplot(2, 3, 4)
plt.title('Width Prediction')
plt.imshow(pred[1].cpu().squeeze())
plt.subplot(2, 3, 5)
plt.title('Height Prediction')
plt.imshow(pred[3].cpu().squeeze())
plt.subplot(2, 3, 6)
plt.title('Width offset Prediction')
plt.imshow(pred[4].cpu().squeeze())
plt.suptitle(f'Epoch {epoch}')
# plt.show()
# print(f'{output_folder}_{epoch}.jpg')
plt.savefig(f'{output_folder}/epoch_{epoch}.jpg')
plt.close()
break
break
if __name__ == '__main__':
import os
model = Res18UnetCenterNet()
model = model.to(device)
optim = torch.optim.Adam(model.parameters())
dataset = ToyDataset(img_shape=(128, 128))
dataloader = torch.utils.data.DataLoader(dataset=dataset,
batch_size=8, num_workers=0)
output_folder = './outputs'
os.makedirs(output_folder, exist_ok=True)
for epoch in range(20):
train_model(model, optim, dataloader, epoch)
eval_model(model, dataloader, output_folder, epoch=epoch)
print()