forked from asny/three-d
-
Notifications
You must be signed in to change notification settings - Fork 0
/
renderer.rs
429 lines (406 loc) · 15.4 KB
/
renderer.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
//!
//! High-level features for easy rendering of different types of objects with different types of shading.
//! Can be combined seamlessly with the mid-level features in the [core](crate::core) module as well as functionality in the [context](crate::context) module.
//!
//! This module contains five main traits
//! - [Geometry] - a geometric representation in 3D space
//! - [Material] - a material that can be applied to a geometry
//! - [PostMaterial] - a material that can be applied to a geometry and rendered after the rest of the scene has been rendered
//! - [Object] - an object in 3D space which has both geometry and material information (use the [Gm] struct to combine any [Material] and [Geometry] into an object)
//! - [Light] - a light that shines onto objects in the scene (some materials are affected by lights, others are not)
//!
//! Common implementations of these traits are found in their respective modules but it is also possible to do a custom implementation by implementing one of the four traits.
//!
//! There are several ways to render something.
//! Objects can be rendered directly using [Object::render] or used in a render call, for example [RenderTarget::render].
//! Geometries can be rendered with a given material using [Geometry::render_with_material] or combined into an object using the [Gm] struct and again used in a render call.
//!
pub use crate::core::*;
use thiserror::Error;
///
/// Error in the [renderer](crate::renderer) module.
///
#[derive(Error, Debug)]
#[allow(missing_docs)]
pub enum RendererError {
#[error("{0} buffer length must be {1}, actual length is {2}")]
InvalidBufferLength(String, usize, usize),
#[error("the material {0} is required by the geometry {1} but could not be found")]
MissingMaterial(String, String),
}
pub mod material;
pub use material::*;
pub mod effect;
pub use effect::*;
pub mod light;
pub use light::*;
pub mod geometry;
pub use geometry::*;
pub mod object;
pub use object::*;
pub mod control;
pub use control::*;
macro_rules! impl_render_target_extensions_body {
() => {
///
/// Render the objects using the given camera and lights into this render target.
/// Use an empty array for the `lights` argument, if the objects does not require lights to be rendered.
/// Also, objects outside the camera frustum are not rendered and the objects are rendered in the order given by [cmp_render_order].
///
pub fn render(
&self,
camera: &Camera,
objects: impl IntoIterator<Item = impl Object>,
lights: &[&dyn Light],
) -> &Self {
self.render_partially(self.scissor_box(), camera, objects, lights)
}
///
/// Render the objects using the given camera and lights into the part of this render target defined by the scissor box.
/// Use an empty array for the `lights` argument, if the objects does not require lights to be rendered.
/// Also, objects outside the camera frustum are not rendered and the objects are rendered in the order given by [cmp_render_order].
///
pub fn render_partially(
&self,
scissor_box: ScissorBox,
camera: &Camera,
objects: impl IntoIterator<Item = impl Object>,
lights: &[&dyn Light],
) -> &Self {
let (mut deferred_objects, mut forward_objects): (Vec<_>, Vec<_>) = objects
.into_iter()
.filter(|o| camera.in_frustum(&o.aabb()))
.partition(|o| o.material_type() == MaterialType::Deferred);
// Deferred
if deferred_objects.len() > 0 {
// Geometry pass
let mut geometry_pass_camera = camera.clone();
let viewport =
Viewport::new_at_origo(camera.viewport().width, camera.viewport().height);
geometry_pass_camera.set_viewport(viewport);
deferred_objects.sort_by(|a, b| cmp_render_order(&geometry_pass_camera, a, b));
let mut geometry_pass_texture = Texture2DArray::new_empty::<[u8; 4]>(
&self.context,
viewport.width,
viewport.height,
3,
Interpolation::Nearest,
Interpolation::Nearest,
None,
Wrapping::ClampToEdge,
Wrapping::ClampToEdge,
);
let mut geometry_pass_depth_texture = DepthTexture2D::new::<f32>(
&self.context,
viewport.width,
viewport.height,
Wrapping::ClampToEdge,
Wrapping::ClampToEdge,
);
let gbuffer_layers = [0, 1, 2];
RenderTarget::new(
geometry_pass_texture.as_color_target(&gbuffer_layers, None),
geometry_pass_depth_texture.as_depth_target(),
)
.clear(ClearState::default())
.write(|| {
for object in deferred_objects {
object.render(&geometry_pass_camera, lights);
}
});
// Lighting pass
self.write_partially(scissor_box, || {
DeferredPhysicalMaterial::lighting_pass(
&self.context,
camera,
ColorTexture::Array {
texture: &geometry_pass_texture,
layers: &gbuffer_layers,
},
DepthTexture::Single(&geometry_pass_depth_texture),
lights,
)
});
}
// Forward
forward_objects.sort_by(|a, b| cmp_render_order(camera, a, b));
self.write_partially(scissor_box, || {
for object in forward_objects {
object.render(camera, lights);
}
});
self
}
///
/// Render the geometries with the given [Material] using the given camera and lights into this render target.
/// Use an empty array for the `lights` argument, if the material does not require lights to be rendered.
///
pub fn render_with_material(
&self,
material: &dyn Material,
camera: &Camera,
geometries: impl IntoIterator<Item = impl Geometry>,
lights: &[&dyn Light],
) -> &Self {
self.render_partially_with_material(
self.scissor_box(),
material,
camera,
geometries,
lights,
)
}
///
/// Render the geometries with the given [Material] using the given camera and lights into the part of this render target defined by the scissor box.
/// Use an empty array for the `lights` argument, if the material does not require lights to be rendered.
///
pub fn render_partially_with_material(
&self,
scissor_box: ScissorBox,
material: &dyn Material,
camera: &Camera,
geometries: impl IntoIterator<Item = impl Geometry>,
lights: &[&dyn Light],
) -> &Self {
self.write_partially(scissor_box, || {
for object in geometries
.into_iter()
.filter(|o| camera.in_frustum(&o.aabb()))
{
object.render_with_material(material, camera, lights);
}
});
self
}
///
/// Render the geometries with the given [PostMaterial] using the given camera and lights into this render target.
/// Use an empty array for the `lights` argument, if the material does not require lights to be rendered.
///
pub fn render_with_post_material(
&self,
material: &dyn PostMaterial,
camera: &Camera,
geometries: impl IntoIterator<Item = impl Geometry>,
lights: &[&dyn Light],
color_texture: Option<ColorTexture>,
depth_texture: Option<DepthTexture>,
) -> &Self {
self.render_partially_with_post_material(
self.scissor_box(),
material,
camera,
geometries,
lights,
color_texture,
depth_texture,
)
}
///
/// Render the geometries with the given [PostMaterial] using the given camera and lights into the part of this render target defined by the scissor box.
/// Use an empty array for the `lights` argument, if the material does not require lights to be rendered.
///
pub fn render_partially_with_post_material(
&self,
scissor_box: ScissorBox,
material: &dyn PostMaterial,
camera: &Camera,
geometries: impl IntoIterator<Item = impl Geometry>,
lights: &[&dyn Light],
color_texture: Option<ColorTexture>,
depth_texture: Option<DepthTexture>,
) -> &Self {
self.write_partially(scissor_box, || {
for object in geometries
.into_iter()
.filter(|o| camera.in_frustum(&o.aabb()))
{
object.render_with_post_material(
material,
camera,
lights,
color_texture,
depth_texture,
);
}
});
self
}
};
}
macro_rules! impl_render_target_extensions {
// 2 generic arguments with bounds
($name:ident < $a:ident : $ta:tt , $b:ident : $tb:tt >) => {
impl<$a: $ta, $b: $tb> $name<$a, $b> {
impl_render_target_extensions_body!();
}
};
// 1 generic argument with bound
($name:ident < $a:ident : $ta:tt >) => {
impl<$a: $ta> $name<$a> {
impl_render_target_extensions_body!();
}
};
// 1 liftetime argument
($name:ident < $lt:lifetime >) => {
impl<$lt> $name<$lt> {
impl_render_target_extensions_body!();
}
};
// without any arguments
($name:ty) => {
impl $name {
impl_render_target_extensions_body!();
}
};
}
impl_render_target_extensions!(RenderTarget<'a>);
impl_render_target_extensions!(ColorTarget<'a>);
impl_render_target_extensions!(DepthTarget<'a>);
impl_render_target_extensions!(RenderTargetMultisample<C: TextureDataType, D: DepthTextureDataType>);
impl_render_target_extensions!(ColorTargetMultisample<C: TextureDataType>);
impl_render_target_extensions!(DepthTargetMultisample<D: DepthTextureDataType>);
///
/// Returns a camera for viewing 2D content.
///
pub fn camera2d(viewport: Viewport) -> Camera {
Camera::new_orthographic(
viewport,
vec3(
viewport.width as f32 * 0.5,
viewport.height as f32 * 0.5,
-1.0,
),
vec3(
viewport.width as f32 * 0.5,
viewport.height as f32 * 0.5,
0.0,
),
vec3(0.0, -1.0, 0.0),
viewport.height as f32,
0.0,
10.0,
)
}
///
/// Compare function for sorting objects based on distance from the camera.
/// The order is opaque objects from nearest to farthest away from the camera,
/// then transparent objects from farthest away to closest to the camera.
///
pub fn cmp_render_order(
camera: &Camera,
obj0: impl Object,
obj1: impl Object,
) -> std::cmp::Ordering {
if obj0.material_type() == MaterialType::Transparent
&& obj1.material_type() != MaterialType::Transparent
{
std::cmp::Ordering::Greater
} else if obj0.material_type() != MaterialType::Transparent
&& obj1.material_type() == MaterialType::Transparent
{
std::cmp::Ordering::Less
} else {
let distance_a = camera.position().distance2(obj0.aabb().center());
let distance_b = camera.position().distance2(obj1.aabb().center());
if distance_a.is_nan() || distance_b.is_nan() {
distance_a.is_nan().cmp(&distance_b.is_nan()) // whatever - just save us from panicing on unwrap below
} else if obj0.material_type() == MaterialType::Transparent {
distance_b.partial_cmp(&distance_a).unwrap()
} else {
distance_a.partial_cmp(&distance_b).unwrap()
}
}
}
///
/// Finds the closest intersection between a ray from the given camera in the given pixel coordinate and the given geometries.
/// The pixel coordinate must be in physical pixels, where (viewport.x, viewport.y) indicate the bottom left corner of the viewport
/// and (viewport.x + viewport.width, viewport.y + viewport.height) indicate the top right corner.
/// Returns ```None``` if no geometry was hit between the near (`z_near`) and far (`z_far`) plane for this camera.
///
pub fn pick(
context: &Context,
camera: &Camera,
pixel: (f32, f32),
geometries: impl IntoIterator<Item = impl Geometry>,
) -> Option<Vec3> {
let pos = camera.position_at_pixel(pixel);
let dir = camera.view_direction_at_pixel(pixel);
ray_intersect(
context,
pos + dir * camera.z_near(),
dir,
camera.z_far() - camera.z_near(),
geometries,
)
}
///
/// Finds the closest intersection between a ray starting at the given position in the given direction and the given geometries.
/// Returns ```None``` if no geometry was hit before the given maximum depth.
///
pub fn ray_intersect(
context: &Context,
position: Vec3,
direction: Vec3,
max_depth: f32,
geometries: impl IntoIterator<Item = impl Geometry>,
) -> Option<Vec3> {
use crate::core::*;
let viewport = Viewport::new_at_origo(1, 1);
let up = if direction.dot(vec3(1.0, 0.0, 0.0)).abs() > 0.99 {
direction.cross(vec3(0.0, 1.0, 0.0))
} else {
direction.cross(vec3(1.0, 0.0, 0.0))
};
let camera = Camera::new_orthographic(
viewport,
position,
position + direction * max_depth,
up,
0.01,
0.0,
max_depth,
);
let mut texture = Texture2D::new_empty::<f32>(
context,
viewport.width,
viewport.height,
Interpolation::Nearest,
Interpolation::Nearest,
None,
Wrapping::ClampToEdge,
Wrapping::ClampToEdge,
);
let mut depth_texture = DepthTexture2D::new::<f32>(
context,
viewport.width,
viewport.height,
Wrapping::ClampToEdge,
Wrapping::ClampToEdge,
);
let depth_material = DepthMaterial {
render_states: RenderStates {
write_mask: WriteMask {
red: true,
..WriteMask::DEPTH
},
..Default::default()
},
..Default::default()
};
let depth = RenderTarget::new(
texture.as_color_target(None),
depth_texture.as_depth_target(),
)
.clear(ClearState::color_and_depth(1.0, 1.0, 1.0, 1.0, 1.0))
.write(|| {
for geometry in geometries {
geometry.render_with_material(&depth_material, &camera, &[]);
}
})
.read_color()[0];
if depth < 1.0 {
Some(position + direction * depth * max_depth)
} else {
None
}
}