forked from spmallick/learnopencv
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathface_detection_opencv_dnn.cpp
96 lines (80 loc) · 2.93 KB
/
face_detection_opencv_dnn.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
#include <iostream>
#include <string>
#include <vector>
#include <stdlib.h>
#include <opencv2/core.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/dnn.hpp>
using namespace cv;
using namespace std;
using namespace cv::dnn;
const size_t inWidth = 300;
const size_t inHeight = 300;
const double inScaleFactor = 1.0;
const float confidenceThreshold = 0.7;
const cv::Scalar meanVal(104.0, 177.0, 123.0);
#define CAFFE
const std::string caffeConfigFile = "./models/deploy.prototxt";
const std::string caffeWeightFile = "./models/res10_300x300_ssd_iter_140000_fp16.caffemodel";
const std::string tensorflowConfigFile = "./models/opencv_face_detector.pbtxt";
const std::string tensorflowWeightFile = "./models/opencv_face_detector_uint8.pb";
void detectFaceOpenCVDNN(Net net, Mat &frameOpenCVDNN)
{
int frameHeight = frameOpenCVDNN.rows;
int frameWidth = frameOpenCVDNN.cols;
#ifdef CAFFE
cv::Mat inputBlob = cv::dnn::blobFromImage(frameOpenCVDNN, inScaleFactor, cv::Size(inWidth, inHeight), meanVal, false, false);
#else
cv::Mat inputBlob = cv::dnn::blobFromImage(frameOpenCVDNN, inScaleFactor, cv::Size(inWidth, inHeight), meanVal, true, false);
#endif
net.setInput(inputBlob, "data");
cv::Mat detection = net.forward("detection_out");
cv::Mat detectionMat(detection.size[2], detection.size[3], CV_32F, detection.ptr<float>());
for(int i = 0; i < detectionMat.rows; i++)
{
float confidence = detectionMat.at<float>(i, 2);
if(confidence > confidenceThreshold)
{
int x1 = static_cast<int>(detectionMat.at<float>(i, 3) * frameWidth);
int y1 = static_cast<int>(detectionMat.at<float>(i, 4) * frameHeight);
int x2 = static_cast<int>(detectionMat.at<float>(i, 5) * frameWidth);
int y2 = static_cast<int>(detectionMat.at<float>(i, 6) * frameHeight);
cv::rectangle(frameOpenCVDNN, cv::Point(x1, y1), cv::Point(x2, y2), cv::Scalar(0, 255, 0),2, 4);
}
}
}
int main( int argc, const char** argv )
{
#ifdef CAFFE
Net net = cv::dnn::readNetFromCaffe(caffeConfigFile, caffeWeightFile);
#else
Net net = cv::dnn::readNetFromTensorflow(tensorflowWeightFile, tensorflowConfigFile);
#endif
VideoCapture source;
if (argc == 1)
source.open(0);
else
source.open(argv[1]);
Mat frame;
double tt_opencvDNN = 0;
double fpsOpencvDNN = 0;
while(1)
{
source >> frame;
if(frame.empty())
break;
double t = cv::getTickCount();
detectFaceOpenCVDNN ( net, frame );
tt_opencvDNN = ((double)cv::getTickCount() - t)/cv::getTickFrequency();
fpsOpencvDNN = 1/tt_opencvDNN;
putText(frame, format("OpenCV DNN ; FPS = %.2f",fpsOpencvDNN), Point(10, 50), FONT_HERSHEY_SIMPLEX, 1.4, Scalar(0, 0, 255), 4);
imshow( "OpenCV - DNN Face Detection", frame );
int k = waitKey(5);
if(k == 27)
{
destroyAllWindows();
break;
}
}
}