forked from spmallick/learnopencv
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun-all.py
204 lines (161 loc) · 6.95 KB
/
run-all.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
from __future__ import division
import cv2
import dlib
import time
import sys
import numpy as np
# Model files
# OpenCV HAAR
faceCascade = cv2.CascadeClassifier('./haarcascade_frontalface_default.xml')
#OpenCV DNN supports 2 networks.
# 1. FP16 version of the original caffe implementation ( 5.4 MB )
# 2. 8 bit Quantized version using Tensorflow ( 2.7 MB )
DNN = "TF"
if DNN=="CAFFE":
modelFile = "res10_300x300_ssd_iter_140000_fp16.caffemodel"
configFile = "deploy.prototxt"
net = cv2.dnn.readNetFromCaffe(configFile, modelFile)
else:
modelFile = "opencv_face_detector_uint8.pb"
configFile = "opencv_face_detector.pbtxt"
net = cv2.dnn.readNetFromTensorflow(modelFile, configFile)
conf_threshold = 0.7
# DLIB HoG
hogFaceDetector = dlib.get_frontal_face_detector()
# DLIB MMOD
dnnFaceDetector = dlib.cnn_face_detection_model_v1("./mmod_human_face_detector.dat")
def detectFaceOpenCVHaar(faceCascade, frame, inHeight=300, inWidth=0):
frameOpenCVHaar = frame.copy()
frameHeight = frameOpenCVHaar.shape[0]
frameWidth = frameOpenCVHaar.shape[1]
if not inWidth:
inWidth = int((frameWidth / frameHeight) * inHeight)
scaleHeight = frameHeight / inHeight
scaleWidth = frameWidth / inWidth
frameOpenCVHaarSmall = cv2.resize(frameOpenCVHaar, (inWidth, inHeight))
frameGray = cv2.cvtColor(frameOpenCVHaarSmall, cv2.COLOR_BGR2GRAY)
faces = faceCascade.detectMultiScale(frameGray)
bboxes = []
for (x, y, w, h) in faces:
x1 = x
y1 = y
x2 = x + w
y2 = y + h
cvRect = [int(x1 * scaleWidth), int(y1 * scaleHeight),
int(x2 * scaleWidth), int(y2 * scaleHeight)]
bboxes.append(cvRect)
cv2.rectangle(frameOpenCVHaar, (cvRect[0], cvRect[1]), (cvRect[2], cvRect[3]), (0, 255, 0),
int(round(frameHeight / 150)), 4)
return frameOpenCVHaar, bboxes
def detectFaceOpenCVDnn(net, frame):
frameOpencvDnn = frame.copy()
frameHeight = frameOpencvDnn.shape[0]
frameWidth = frameOpencvDnn.shape[1]
blob = cv2.dnn.blobFromImage(frameOpencvDnn, 1.0, (300, 300), [104, 117, 123], False, False)
net.setInput(blob)
detections = net.forward()
bboxes = []
for i in range(detections.shape[2]):
confidence = detections[0, 0, i, 2]
if confidence > conf_threshold:
x1 = int(detections[0, 0, i, 3] * frameWidth)
y1 = int(detections[0, 0, i, 4] * frameHeight)
x2 = int(detections[0, 0, i, 5] * frameWidth)
y2 = int(detections[0, 0, i, 6] * frameHeight)
bboxes.append([x1, y1, x2, y2])
cv2.rectangle(frameOpencvDnn, (x1, y1), (x2, y2), (0, 255, 0), int(round(frameHeight/150)), 8)
return frameOpencvDnn, bboxes
def detectFaceDlibHog(detector, frame, inHeight=300, inWidth=0):
frameDlibHog = frame.copy()
frameHeight = frameDlibHog.shape[0]
frameWidth = frameDlibHog.shape[1]
if not inWidth:
inWidth = int((frameWidth / frameHeight)*inHeight)
scaleHeight = frameHeight / inHeight
scaleWidth = frameWidth / inWidth
frameDlibHogSmall = cv2.resize(frameDlibHog, (inWidth, inHeight))
frameDlibHogSmall = cv2.cvtColor(frameDlibHogSmall, cv2.COLOR_BGR2RGB)
faceRects = detector(frameDlibHogSmall, 0)
print(frameWidth, frameHeight, inWidth, inHeight)
bboxes = []
for faceRect in faceRects:
cvRect = [int(faceRect.left()*scaleWidth), int(faceRect.top()*scaleHeight),
int(faceRect.right()*scaleWidth), int(faceRect.bottom()*scaleHeight) ]
bboxes.append(cvRect)
cv2.rectangle(frameDlibHog, (cvRect[0], cvRect[1]), (cvRect[2], cvRect[3]), (0, 255, 0), int(round(frameHeight/150)), 4)
return frameDlibHog, bboxes
def detectFaceDlibMMOD(detector, frame, inHeight=300, inWidth=0):
frameDlibMMOD = frame.copy()
frameHeight = frameDlibMMOD.shape[0]
frameWidth = frameDlibMMOD.shape[1]
if not inWidth:
inWidth = int((frameWidth / frameHeight)*inHeight)
scaleHeight = frameHeight / inHeight
scaleWidth = frameWidth / inWidth
frameDlibMMODSmall = cv2.resize(frameDlibMMOD, (inWidth, inHeight))
frameDlibMMODSmall = cv2.cvtColor(frameDlibMMODSmall, cv2.COLOR_BGR2RGB)
faceRects = detector(frameDlibMMODSmall, 0)
print(frameWidth, frameHeight, inWidth, inHeight)
bboxes = []
for faceRect in faceRects:
cvRect = [int(faceRect.rect.left()*scaleWidth), int(faceRect.rect.top()*scaleHeight),
int(faceRect.rect.right()*scaleWidth), int(faceRect.rect.bottom()*scaleHeight) ]
bboxes.append(cvRect)
cv2.rectangle(frameDlibMMOD, (cvRect[0], cvRect[1]), (cvRect[2], cvRect[3]), (0, 255, 0), int(round(frameHeight/150)), 4)
return frameDlibMMOD, bboxes
source = 0
if len(sys.argv) > 1:
source = sys.argv[1]
cap = cv2.VideoCapture(source)
hasFrame, frame = cap.read()
cv2.namedWindow("Face Detection Comparison", cv2.WINDOW_NORMAL)
vid_writer = cv2.VideoWriter('output-{}.avi'.format(str(source).split(".")[0]),cv2.VideoWriter_fourcc('M','J','P','G'), 15, (frame.shape[1]*2,frame.shape[0]*2))
frame_count = 0
tt_opencvHaar = 0
tt_opencvDnn = 0
tt_dlibHog = 0
tt_dlibMmod = 0
while(1):
hasFrame, frame = cap.read()
if not hasFrame:
break
frame_count += 1
t = time.time()
outOpencvHaar, bboxes = detectFaceOpenCVHaar(faceCascade, frame)
tt_opencvHaar += time.time() - t
fpsOpencvHaar = frame_count / tt_opencvHaar
label = "OpenCV Haar ; FPS : {:.2f}".format(fpsOpencvHaar)
cv2.putText(outOpencvHaar, label, (10, 50), cv2.FONT_HERSHEY_SIMPLEX, 1.4, (0, 0, 255), 3, cv2.LINE_AA)
t = time.time()
outOpencvDnn, bboxes = detectFaceOpenCVDnn(net,frame)
tt_opencvDnn += time.time() - t
fpsOpencvDnn = frame_count / tt_opencvDnn
label = "OpenCV DNN ; FPS : {:.2f}".format(fpsOpencvDnn)
cv2.putText(outOpencvDnn, label, (10,50), cv2.FONT_HERSHEY_SIMPLEX, 1.4, (0, 0, 255), 3, cv2.LINE_AA)
t = time.time()
outDlibHog, bboxes = detectFaceDlibHog(hogFaceDetector,frame)
tt_dlibHog += time.time() - t
fpsDlibHog = frame_count / tt_dlibHog
label = "DLIB HoG ; ; FPS : {:.2f}".format(fpsDlibHog)
cv2.putText(outDlibHog, label, (10, 50), cv2.FONT_HERSHEY_SIMPLEX, 1.4, (0, 0, 255), 3, cv2.LINE_AA)
t = time.time()
outDlibMMOD, bboxes = detectFaceDlibMMOD(dnnFaceDetector,frame)
tt_dlibMmod += time.time() - t
fpsDlibMmod = frame_count / tt_dlibMmod
label = "DLIB MMOD ; FPS : {:.2f}".format(fpsDlibMmod)
cv2.putText(outDlibMMOD, label, (10, 50), cv2.FONT_HERSHEY_SIMPLEX, 1.4, (0, 0, 255), 3, cv2.LINE_AA)
top = np.hstack([outOpencvHaar, outOpencvDnn])
bottom = np.hstack([outDlibHog, outDlibMMOD])
combined = np.vstack([top, bottom])
cv2.imshow("Face Detection Comparison", combined)
if frame_count == 1:
tt_opencvHaar = 0
tt_opencvDnn = 0
tt_dlibHog = 0
tt_dlibMmod = 0
vid_writer.write(combined)
k = cv2.waitKey(10)
if k == 27:
break
cv2.destroyAllWindows()
vid_writer.release()