forked from spmallick/learnopencv
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimage_alignment.py
executable file
·77 lines (57 loc) · 2.57 KB
/
image_alignment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
#!/usr/bin/python
'''
OpenCV Image Alignment Example
Copyright 2015 by Satya Mallick <[email protected]>
'''
import cv2
import numpy as np
def get_gradient(im) :
# Calculate the x and y gradients using Sobel operator
grad_x = cv2.Sobel(im,cv2.CV_32F,1,0,ksize=3)
grad_y = cv2.Sobel(im,cv2.CV_32F,0,1,ksize=3)
# Combine the two gradients
grad = cv2.addWeighted(np.absolute(grad_x), 0.5, np.absolute(grad_y), 0.5, 0)
return grad
if __name__ == '__main__':
# Read 8-bit color image.
# This is an image in which the three channels are
# concatenated vertically.
im = cv2.imread("images/emir.jpg", cv2.IMREAD_GRAYSCALE);
# Find the width and height of the color image
sz = im.shape
print sz
height = int(sz[0] / 3);
width = sz[1]
# Extract the three channels from the gray scale image
# and merge the three channels into one color image
im_color = np.zeros((height,width,3), dtype=np.uint8 )
for i in xrange(0,3) :
im_color[:,:,i] = im[ i * height:(i+1) * height,:]
# Allocate space for aligned image
im_aligned = np.zeros((height,width,3), dtype=np.uint8 )
# The blue and green channels will be aligned to the red channel.
# So copy the red channel
im_aligned[:,:,2] = im_color[:,:,2]
# Define motion model
warp_mode = cv2.MOTION_HOMOGRAPHY
# Set the warp matrix to identity.
if warp_mode == cv2.MOTION_HOMOGRAPHY :
warp_matrix = np.eye(3, 3, dtype=np.float32)
else :
warp_matrix = np.eye(2, 3, dtype=np.float32)
# Set the stopping criteria for the algorithm.
criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 5000, 1e-10)
# Warp the blue and green channels to the red channel
for i in xrange(0,2) :
(cc, warp_matrix) = cv2.findTransformECC (get_gradient(im_color[:,:,2]), get_gradient(im_color[:,:,i]),warp_matrix, warp_mode, criteria)
if warp_mode == cv2.MOTION_HOMOGRAPHY :
# Use Perspective warp when the transformation is a Homography
im_aligned[:,:,i] = cv2.warpPerspective (im_color[:,:,i], warp_matrix, (width,height), flags=cv2.INTER_LINEAR + cv2.WARP_INVERSE_MAP)
else :
# Use Affine warp when the transformation is not a Homography
im_aligned[:,:,i] = cv2.warpAffine(im_color[:,:,i], warp_matrix, (width, height), flags=cv2.INTER_LINEAR + cv2.WARP_INVERSE_MAP);
print warp_matrix
# Show final output
cv2.imshow("Color Image", im_color)
cv2.imshow("Aligned Image", im_aligned)
cv2.waitKey(0)