forked from torvalds/linux
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtcp_input.c
6899 lines (5956 loc) · 197 KB
/
tcp_input.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// SPDX-License-Identifier: GPL-2.0
/*
* INET An implementation of the TCP/IP protocol suite for the LINUX
* operating system. INET is implemented using the BSD Socket
* interface as the means of communication with the user level.
*
* Implementation of the Transmission Control Protocol(TCP).
*
* Authors: Ross Biro
* Fred N. van Kempen, <[email protected]>
* Mark Evans, <[email protected]>
* Corey Minyard <[email protected]>
* Florian La Roche, <[email protected]>
* Charles Hedrick, <[email protected]>
* Linus Torvalds, <[email protected]>
* Alan Cox, <[email protected]>
* Matthew Dillon, <[email protected]>
* Arnt Gulbrandsen, <[email protected]>
* Jorge Cwik, <[email protected]>
*/
/*
* Changes:
* Pedro Roque : Fast Retransmit/Recovery.
* Two receive queues.
* Retransmit queue handled by TCP.
* Better retransmit timer handling.
* New congestion avoidance.
* Header prediction.
* Variable renaming.
*
* Eric : Fast Retransmit.
* Randy Scott : MSS option defines.
* Eric Schenk : Fixes to slow start algorithm.
* Eric Schenk : Yet another double ACK bug.
* Eric Schenk : Delayed ACK bug fixes.
* Eric Schenk : Floyd style fast retrans war avoidance.
* David S. Miller : Don't allow zero congestion window.
* Eric Schenk : Fix retransmitter so that it sends
* next packet on ack of previous packet.
* Andi Kleen : Moved open_request checking here
* and process RSTs for open_requests.
* Andi Kleen : Better prune_queue, and other fixes.
* Andrey Savochkin: Fix RTT measurements in the presence of
* timestamps.
* Andrey Savochkin: Check sequence numbers correctly when
* removing SACKs due to in sequence incoming
* data segments.
* Andi Kleen: Make sure we never ack data there is not
* enough room for. Also make this condition
* a fatal error if it might still happen.
* Andi Kleen: Add tcp_measure_rcv_mss to make
* connections with MSS<min(MTU,ann. MSS)
* work without delayed acks.
* Andi Kleen: Process packets with PSH set in the
* fast path.
* J Hadi Salim: ECN support
* Andrei Gurtov,
* Pasi Sarolahti,
* Panu Kuhlberg: Experimental audit of TCP (re)transmission
* engine. Lots of bugs are found.
* Pasi Sarolahti: F-RTO for dealing with spurious RTOs
*/
#define pr_fmt(fmt) "TCP: " fmt
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/sysctl.h>
#include <linux/kernel.h>
#include <linux/prefetch.h>
#include <net/dst.h>
#include <net/tcp.h>
#include <net/inet_common.h>
#include <linux/ipsec.h>
#include <asm/unaligned.h>
#include <linux/errqueue.h>
#include <trace/events/tcp.h>
#include <linux/jump_label_ratelimit.h>
#include <net/busy_poll.h>
#include <net/mptcp.h>
int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
#define FLAG_DATA 0x01 /* Incoming frame contained data. */
#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
#define FLAG_DATA_SACKED 0x20 /* New SACK. */
#define FLAG_ECE 0x40 /* ECE in this ACK */
#define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
#define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
#define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
#define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
#define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
#define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
#define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */
#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
#define REXMIT_NONE 0 /* no loss recovery to do */
#define REXMIT_LOST 1 /* retransmit packets marked lost */
#define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
#if IS_ENABLED(CONFIG_TLS_DEVICE)
static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
void clean_acked_data_enable(struct inet_connection_sock *icsk,
void (*cad)(struct sock *sk, u32 ack_seq))
{
icsk->icsk_clean_acked = cad;
static_branch_deferred_inc(&clean_acked_data_enabled);
}
EXPORT_SYMBOL_GPL(clean_acked_data_enable);
void clean_acked_data_disable(struct inet_connection_sock *icsk)
{
static_branch_slow_dec_deferred(&clean_acked_data_enabled);
icsk->icsk_clean_acked = NULL;
}
EXPORT_SYMBOL_GPL(clean_acked_data_disable);
void clean_acked_data_flush(void)
{
static_key_deferred_flush(&clean_acked_data_enabled);
}
EXPORT_SYMBOL_GPL(clean_acked_data_flush);
#endif
#ifdef CONFIG_CGROUP_BPF
static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
{
bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
struct bpf_sock_ops_kern sock_ops;
if (likely(!unknown_opt && !parse_all_opt))
return;
/* The skb will be handled in the
* bpf_skops_established() or
* bpf_skops_write_hdr_opt().
*/
switch (sk->sk_state) {
case TCP_SYN_RECV:
case TCP_SYN_SENT:
case TCP_LISTEN:
return;
}
sock_owned_by_me(sk);
memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
sock_ops.is_fullsock = 1;
sock_ops.sk = sk;
bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
}
static void bpf_skops_established(struct sock *sk, int bpf_op,
struct sk_buff *skb)
{
struct bpf_sock_ops_kern sock_ops;
sock_owned_by_me(sk);
memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
sock_ops.op = bpf_op;
sock_ops.is_fullsock = 1;
sock_ops.sk = sk;
/* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
if (skb)
bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
}
#else
static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
{
}
static void bpf_skops_established(struct sock *sk, int bpf_op,
struct sk_buff *skb)
{
}
#endif
static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
unsigned int len)
{
static bool __once __read_mostly;
if (!__once) {
struct net_device *dev;
__once = true;
rcu_read_lock();
dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
if (!dev || len >= dev->mtu)
pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
dev ? dev->name : "Unknown driver");
rcu_read_unlock();
}
}
/* Adapt the MSS value used to make delayed ack decision to the
* real world.
*/
static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
{
struct inet_connection_sock *icsk = inet_csk(sk);
const unsigned int lss = icsk->icsk_ack.last_seg_size;
unsigned int len;
icsk->icsk_ack.last_seg_size = 0;
/* skb->len may jitter because of SACKs, even if peer
* sends good full-sized frames.
*/
len = skb_shinfo(skb)->gso_size ? : skb->len;
if (len >= icsk->icsk_ack.rcv_mss) {
icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
tcp_sk(sk)->advmss);
/* Account for possibly-removed options */
if (unlikely(len > icsk->icsk_ack.rcv_mss +
MAX_TCP_OPTION_SPACE))
tcp_gro_dev_warn(sk, skb, len);
} else {
/* Otherwise, we make more careful check taking into account,
* that SACKs block is variable.
*
* "len" is invariant segment length, including TCP header.
*/
len += skb->data - skb_transport_header(skb);
if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
/* If PSH is not set, packet should be
* full sized, provided peer TCP is not badly broken.
* This observation (if it is correct 8)) allows
* to handle super-low mtu links fairly.
*/
(len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
!(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
/* Subtract also invariant (if peer is RFC compliant),
* tcp header plus fixed timestamp option length.
* Resulting "len" is MSS free of SACK jitter.
*/
len -= tcp_sk(sk)->tcp_header_len;
icsk->icsk_ack.last_seg_size = len;
if (len == lss) {
icsk->icsk_ack.rcv_mss = len;
return;
}
}
if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
}
}
static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
{
struct inet_connection_sock *icsk = inet_csk(sk);
unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
if (quickacks == 0)
quickacks = 2;
quickacks = min(quickacks, max_quickacks);
if (quickacks > icsk->icsk_ack.quick)
icsk->icsk_ack.quick = quickacks;
}
void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
{
struct inet_connection_sock *icsk = inet_csk(sk);
tcp_incr_quickack(sk, max_quickacks);
inet_csk_exit_pingpong_mode(sk);
icsk->icsk_ack.ato = TCP_ATO_MIN;
}
EXPORT_SYMBOL(tcp_enter_quickack_mode);
/* Send ACKs quickly, if "quick" count is not exhausted
* and the session is not interactive.
*/
static bool tcp_in_quickack_mode(struct sock *sk)
{
const struct inet_connection_sock *icsk = inet_csk(sk);
const struct dst_entry *dst = __sk_dst_get(sk);
return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
}
static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
{
if (tp->ecn_flags & TCP_ECN_OK)
tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
}
static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
{
if (tcp_hdr(skb)->cwr) {
tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
/* If the sender is telling us it has entered CWR, then its
* cwnd may be very low (even just 1 packet), so we should ACK
* immediately.
*/
if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
}
}
static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
{
tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
}
static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
{
struct tcp_sock *tp = tcp_sk(sk);
switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
case INET_ECN_NOT_ECT:
/* Funny extension: if ECT is not set on a segment,
* and we already seen ECT on a previous segment,
* it is probably a retransmit.
*/
if (tp->ecn_flags & TCP_ECN_SEEN)
tcp_enter_quickack_mode(sk, 2);
break;
case INET_ECN_CE:
if (tcp_ca_needs_ecn(sk))
tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
/* Better not delay acks, sender can have a very low cwnd */
tcp_enter_quickack_mode(sk, 2);
tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
}
tp->ecn_flags |= TCP_ECN_SEEN;
break;
default:
if (tcp_ca_needs_ecn(sk))
tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
tp->ecn_flags |= TCP_ECN_SEEN;
break;
}
}
static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
{
if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
__tcp_ecn_check_ce(sk, skb);
}
static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
{
if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
tp->ecn_flags &= ~TCP_ECN_OK;
}
static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
{
if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
tp->ecn_flags &= ~TCP_ECN_OK;
}
static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
{
if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
return true;
return false;
}
/* Buffer size and advertised window tuning.
*
* 1. Tuning sk->sk_sndbuf, when connection enters established state.
*/
static void tcp_sndbuf_expand(struct sock *sk)
{
const struct tcp_sock *tp = tcp_sk(sk);
const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
int sndmem, per_mss;
u32 nr_segs;
/* Worst case is non GSO/TSO : each frame consumes one skb
* and skb->head is kmalloced using power of two area of memory
*/
per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
MAX_TCP_HEADER +
SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
per_mss = roundup_pow_of_two(per_mss) +
SKB_DATA_ALIGN(sizeof(struct sk_buff));
nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
/* Fast Recovery (RFC 5681 3.2) :
* Cubic needs 1.7 factor, rounded to 2 to include
* extra cushion (application might react slowly to EPOLLOUT)
*/
sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
sndmem *= nr_segs * per_mss;
if (sk->sk_sndbuf < sndmem)
WRITE_ONCE(sk->sk_sndbuf,
min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]));
}
/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
*
* All tcp_full_space() is split to two parts: "network" buffer, allocated
* forward and advertised in receiver window (tp->rcv_wnd) and
* "application buffer", required to isolate scheduling/application
* latencies from network.
* window_clamp is maximal advertised window. It can be less than
* tcp_full_space(), in this case tcp_full_space() - window_clamp
* is reserved for "application" buffer. The less window_clamp is
* the smoother our behaviour from viewpoint of network, but the lower
* throughput and the higher sensitivity of the connection to losses. 8)
*
* rcv_ssthresh is more strict window_clamp used at "slow start"
* phase to predict further behaviour of this connection.
* It is used for two goals:
* - to enforce header prediction at sender, even when application
* requires some significant "application buffer". It is check #1.
* - to prevent pruning of receive queue because of misprediction
* of receiver window. Check #2.
*
* The scheme does not work when sender sends good segments opening
* window and then starts to feed us spaghetti. But it should work
* in common situations. Otherwise, we have to rely on queue collapsing.
*/
/* Slow part of check#2. */
static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
{
struct tcp_sock *tp = tcp_sk(sk);
/* Optimize this! */
int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
while (tp->rcv_ssthresh <= window) {
if (truesize <= skb->len)
return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
truesize >>= 1;
window >>= 1;
}
return 0;
}
static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
{
struct tcp_sock *tp = tcp_sk(sk);
int room;
room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
/* Check #1 */
if (room > 0 && !tcp_under_memory_pressure(sk)) {
int incr;
/* Check #2. Increase window, if skb with such overhead
* will fit to rcvbuf in future.
*/
if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
incr = 2 * tp->advmss;
else
incr = __tcp_grow_window(sk, skb);
if (incr) {
incr = max_t(int, incr, 2 * skb->len);
tp->rcv_ssthresh += min(room, incr);
inet_csk(sk)->icsk_ack.quick |= 1;
}
}
}
/* 3. Try to fixup all. It is made immediately after connection enters
* established state.
*/
static void tcp_init_buffer_space(struct sock *sk)
{
int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
struct tcp_sock *tp = tcp_sk(sk);
int maxwin;
if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
tcp_sndbuf_expand(sk);
tcp_mstamp_refresh(tp);
tp->rcvq_space.time = tp->tcp_mstamp;
tp->rcvq_space.seq = tp->copied_seq;
maxwin = tcp_full_space(sk);
if (tp->window_clamp >= maxwin) {
tp->window_clamp = maxwin;
if (tcp_app_win && maxwin > 4 * tp->advmss)
tp->window_clamp = max(maxwin -
(maxwin >> tcp_app_win),
4 * tp->advmss);
}
/* Force reservation of one segment. */
if (tcp_app_win &&
tp->window_clamp > 2 * tp->advmss &&
tp->window_clamp + tp->advmss > maxwin)
tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
tp->snd_cwnd_stamp = tcp_jiffies32;
tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
(u32)TCP_INIT_CWND * tp->advmss);
}
/* 4. Recalculate window clamp after socket hit its memory bounds. */
static void tcp_clamp_window(struct sock *sk)
{
struct tcp_sock *tp = tcp_sk(sk);
struct inet_connection_sock *icsk = inet_csk(sk);
struct net *net = sock_net(sk);
icsk->icsk_ack.quick = 0;
if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
!(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
!tcp_under_memory_pressure(sk) &&
sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
WRITE_ONCE(sk->sk_rcvbuf,
min(atomic_read(&sk->sk_rmem_alloc),
net->ipv4.sysctl_tcp_rmem[2]));
}
if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
}
/* Initialize RCV_MSS value.
* RCV_MSS is an our guess about MSS used by the peer.
* We haven't any direct information about the MSS.
* It's better to underestimate the RCV_MSS rather than overestimate.
* Overestimations make us ACKing less frequently than needed.
* Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
*/
void tcp_initialize_rcv_mss(struct sock *sk)
{
const struct tcp_sock *tp = tcp_sk(sk);
unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
hint = min(hint, tp->rcv_wnd / 2);
hint = min(hint, TCP_MSS_DEFAULT);
hint = max(hint, TCP_MIN_MSS);
inet_csk(sk)->icsk_ack.rcv_mss = hint;
}
EXPORT_SYMBOL(tcp_initialize_rcv_mss);
/* Receiver "autotuning" code.
*
* The algorithm for RTT estimation w/o timestamps is based on
* Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
* <https://public.lanl.gov/radiant/pubs.html#DRS>
*
* More detail on this code can be found at
* <http://staff.psc.edu/jheffner/>,
* though this reference is out of date. A new paper
* is pending.
*/
static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
{
u32 new_sample = tp->rcv_rtt_est.rtt_us;
long m = sample;
if (new_sample != 0) {
/* If we sample in larger samples in the non-timestamp
* case, we could grossly overestimate the RTT especially
* with chatty applications or bulk transfer apps which
* are stalled on filesystem I/O.
*
* Also, since we are only going for a minimum in the
* non-timestamp case, we do not smooth things out
* else with timestamps disabled convergence takes too
* long.
*/
if (!win_dep) {
m -= (new_sample >> 3);
new_sample += m;
} else {
m <<= 3;
if (m < new_sample)
new_sample = m;
}
} else {
/* No previous measure. */
new_sample = m << 3;
}
tp->rcv_rtt_est.rtt_us = new_sample;
}
static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
{
u32 delta_us;
if (tp->rcv_rtt_est.time == 0)
goto new_measure;
if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
return;
delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
if (!delta_us)
delta_us = 1;
tcp_rcv_rtt_update(tp, delta_us, 1);
new_measure:
tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
tp->rcv_rtt_est.time = tp->tcp_mstamp;
}
static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
const struct sk_buff *skb)
{
struct tcp_sock *tp = tcp_sk(sk);
if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
return;
tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
if (TCP_SKB_CB(skb)->end_seq -
TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
u32 delta_us;
if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
if (!delta)
delta = 1;
delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
tcp_rcv_rtt_update(tp, delta_us, 0);
}
}
}
/*
* This function should be called every time data is copied to user space.
* It calculates the appropriate TCP receive buffer space.
*/
void tcp_rcv_space_adjust(struct sock *sk)
{
struct tcp_sock *tp = tcp_sk(sk);
u32 copied;
int time;
trace_tcp_rcv_space_adjust(sk);
tcp_mstamp_refresh(tp);
time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
return;
/* Number of bytes copied to user in last RTT */
copied = tp->copied_seq - tp->rcvq_space.seq;
if (copied <= tp->rcvq_space.space)
goto new_measure;
/* A bit of theory :
* copied = bytes received in previous RTT, our base window
* To cope with packet losses, we need a 2x factor
* To cope with slow start, and sender growing its cwin by 100 %
* every RTT, we need a 4x factor, because the ACK we are sending
* now is for the next RTT, not the current one :
* <prev RTT . ><current RTT .. ><next RTT .... >
*/
if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
int rcvmem, rcvbuf;
u64 rcvwin, grow;
/* minimal window to cope with packet losses, assuming
* steady state. Add some cushion because of small variations.
*/
rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
/* Accommodate for sender rate increase (eg. slow start) */
grow = rcvwin * (copied - tp->rcvq_space.space);
do_div(grow, tp->rcvq_space.space);
rcvwin += (grow << 1);
rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
rcvmem += 128;
do_div(rcvwin, tp->advmss);
rcvbuf = min_t(u64, rcvwin * rcvmem,
sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
if (rcvbuf > sk->sk_rcvbuf) {
WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
/* Make the window clamp follow along. */
tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
}
}
tp->rcvq_space.space = copied;
new_measure:
tp->rcvq_space.seq = tp->copied_seq;
tp->rcvq_space.time = tp->tcp_mstamp;
}
/* There is something which you must keep in mind when you analyze the
* behavior of the tp->ato delayed ack timeout interval. When a
* connection starts up, we want to ack as quickly as possible. The
* problem is that "good" TCP's do slow start at the beginning of data
* transmission. The means that until we send the first few ACK's the
* sender will sit on his end and only queue most of his data, because
* he can only send snd_cwnd unacked packets at any given time. For
* each ACK we send, he increments snd_cwnd and transmits more of his
* queue. -DaveM
*/
static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
{
struct tcp_sock *tp = tcp_sk(sk);
struct inet_connection_sock *icsk = inet_csk(sk);
u32 now;
inet_csk_schedule_ack(sk);
tcp_measure_rcv_mss(sk, skb);
tcp_rcv_rtt_measure(tp);
now = tcp_jiffies32;
if (!icsk->icsk_ack.ato) {
/* The _first_ data packet received, initialize
* delayed ACK engine.
*/
tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
icsk->icsk_ack.ato = TCP_ATO_MIN;
} else {
int m = now - icsk->icsk_ack.lrcvtime;
if (m <= TCP_ATO_MIN / 2) {
/* The fastest case is the first. */
icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
} else if (m < icsk->icsk_ack.ato) {
icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
if (icsk->icsk_ack.ato > icsk->icsk_rto)
icsk->icsk_ack.ato = icsk->icsk_rto;
} else if (m > icsk->icsk_rto) {
/* Too long gap. Apparently sender failed to
* restart window, so that we send ACKs quickly.
*/
tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
sk_mem_reclaim(sk);
}
}
icsk->icsk_ack.lrcvtime = now;
tcp_ecn_check_ce(sk, skb);
if (skb->len >= 128)
tcp_grow_window(sk, skb);
}
/* Called to compute a smoothed rtt estimate. The data fed to this
* routine either comes from timestamps, or from segments that were
* known _not_ to have been retransmitted [see Karn/Partridge
* Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
* piece by Van Jacobson.
* NOTE: the next three routines used to be one big routine.
* To save cycles in the RFC 1323 implementation it was better to break
* it up into three procedures. -- erics
*/
static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
{
struct tcp_sock *tp = tcp_sk(sk);
long m = mrtt_us; /* RTT */
u32 srtt = tp->srtt_us;
/* The following amusing code comes from Jacobson's
* article in SIGCOMM '88. Note that rtt and mdev
* are scaled versions of rtt and mean deviation.
* This is designed to be as fast as possible
* m stands for "measurement".
*
* On a 1990 paper the rto value is changed to:
* RTO = rtt + 4 * mdev
*
* Funny. This algorithm seems to be very broken.
* These formulae increase RTO, when it should be decreased, increase
* too slowly, when it should be increased quickly, decrease too quickly
* etc. I guess in BSD RTO takes ONE value, so that it is absolutely
* does not matter how to _calculate_ it. Seems, it was trap
* that VJ failed to avoid. 8)
*/
if (srtt != 0) {
m -= (srtt >> 3); /* m is now error in rtt est */
srtt += m; /* rtt = 7/8 rtt + 1/8 new */
if (m < 0) {
m = -m; /* m is now abs(error) */
m -= (tp->mdev_us >> 2); /* similar update on mdev */
/* This is similar to one of Eifel findings.
* Eifel blocks mdev updates when rtt decreases.
* This solution is a bit different: we use finer gain
* for mdev in this case (alpha*beta).
* Like Eifel it also prevents growth of rto,
* but also it limits too fast rto decreases,
* happening in pure Eifel.
*/
if (m > 0)
m >>= 3;
} else {
m -= (tp->mdev_us >> 2); /* similar update on mdev */
}
tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
if (tp->mdev_us > tp->mdev_max_us) {
tp->mdev_max_us = tp->mdev_us;
if (tp->mdev_max_us > tp->rttvar_us)
tp->rttvar_us = tp->mdev_max_us;
}
if (after(tp->snd_una, tp->rtt_seq)) {
if (tp->mdev_max_us < tp->rttvar_us)
tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
tp->rtt_seq = tp->snd_nxt;
tp->mdev_max_us = tcp_rto_min_us(sk);
tcp_bpf_rtt(sk);
}
} else {
/* no previous measure. */
srtt = m << 3; /* take the measured time to be rtt */
tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
tp->mdev_max_us = tp->rttvar_us;
tp->rtt_seq = tp->snd_nxt;
tcp_bpf_rtt(sk);
}
tp->srtt_us = max(1U, srtt);
}
static void tcp_update_pacing_rate(struct sock *sk)
{
const struct tcp_sock *tp = tcp_sk(sk);
u64 rate;
/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
/* current rate is (cwnd * mss) / srtt
* In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
* In Congestion Avoidance phase, set it to 120 % the current rate.
*
* [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
* If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
* end of slow start and should slow down.
*/
if (tp->snd_cwnd < tp->snd_ssthresh / 2)
rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
else
rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
rate *= max(tp->snd_cwnd, tp->packets_out);
if (likely(tp->srtt_us))
do_div(rate, tp->srtt_us);
/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
* without any lock. We want to make sure compiler wont store
* intermediate values in this location.
*/
WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
sk->sk_max_pacing_rate));
}
/* Calculate rto without backoff. This is the second half of Van Jacobson's
* routine referred to above.
*/
static void tcp_set_rto(struct sock *sk)
{
const struct tcp_sock *tp = tcp_sk(sk);
/* Old crap is replaced with new one. 8)
*
* More seriously:
* 1. If rtt variance happened to be less 50msec, it is hallucination.
* It cannot be less due to utterly erratic ACK generation made
* at least by solaris and freebsd. "Erratic ACKs" has _nothing_
* to do with delayed acks, because at cwnd>2 true delack timeout
* is invisible. Actually, Linux-2.4 also generates erratic
* ACKs in some circumstances.
*/
inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
/* 2. Fixups made earlier cannot be right.
* If we do not estimate RTO correctly without them,
* all the algo is pure shit and should be replaced
* with correct one. It is exactly, which we pretend to do.
*/
/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
* guarantees that rto is higher.
*/
tcp_bound_rto(sk);
}
__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
{
__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
if (!cwnd)
cwnd = TCP_INIT_CWND;
return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
}
struct tcp_sacktag_state {
/* Timestamps for earliest and latest never-retransmitted segment
* that was SACKed. RTO needs the earliest RTT to stay conservative,
* but congestion control should still get an accurate delay signal.
*/
u64 first_sackt;
u64 last_sackt;
u32 reord;
u32 sack_delivered;
int flag;
unsigned int mss_now;
struct rate_sample *rate;
};
/* Take a notice that peer is sending D-SACKs. Skip update of data delivery
* and spurious retransmission information if this DSACK is unlikely caused by
* sender's action:
* - DSACKed sequence range is larger than maximum receiver's window.
* - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
*/
static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
u32 end_seq, struct tcp_sacktag_state *state)
{
u32 seq_len, dup_segs = 1;
if (!before(start_seq, end_seq))
return 0;
seq_len = end_seq - start_seq;
/* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
if (seq_len > tp->max_window)
return 0;
if (seq_len > tp->mss_cache)
dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
tp->dsack_dups += dup_segs;
/* Skip the DSACK if dup segs weren't retransmitted by sender */
if (tp->dsack_dups > tp->total_retrans)
return 0;
tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
tp->rack.dsack_seen = 1;
state->flag |= FLAG_DSACKING_ACK;
/* A spurious retransmission is delivered */
state->sack_delivered += dup_segs;
return dup_segs;
}
/* It's reordering when higher sequence was delivered (i.e. sacked) before
* some lower never-retransmitted sequence ("low_seq"). The maximum reordering
* distance is approximated in full-mss packet distance ("reordering").
*/
static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
const int ts)
{
struct tcp_sock *tp = tcp_sk(sk);
const u32 mss = tp->mss_cache;
u32 fack, metric;
fack = tcp_highest_sack_seq(tp);
if (!before(low_seq, fack))