forked from pytorch/pytorch.github.io
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtorch.html
9129 lines (8581 loc) · 811 KB
/
torch.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>torch — PyTorch master documentation</title>
<link rel="canonical" href="https://pytorch.org/docs/stable/torch.html"/>
<link rel="stylesheet" href="_static/css/theme.css" type="text/css" />
<!-- <link rel="stylesheet" href="_static/pygments.css" type="text/css" /> -->
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.css" type="text/css" />
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.css" type="text/css" />
<link rel="stylesheet" href="_static/katex-math.css" type="text/css" />
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" />
<link rel="next" title="torch.Tensor" href="tensors.html" />
<link rel="prev" title="PyTorch Governance | Persons of Interest" href="community/persons_of_interest.html" />
<script src="_static/js/modernizr.min.js"></script>
</head>
<div class="container-fluid header-holder tutorials-header" id="header-holder">
<div class="container">
<div class="header-container">
<a class="header-logo" href="https://pytorch.org/" aria-label="PyTorch"></a>
<div class="main-menu">
<ul>
<li>
<a href="https://pytorch.org/get-started">Get Started</a>
</li>
<li>
<a href="https://pytorch.org/features">Features</a>
</li>
<li>
<a href="https://pytorch.org/ecosystem">Ecosystem</a>
</li>
<li>
<a href="https://pytorch.org/blog/">Blog</a>
</li>
<li>
<a href="https://pytorch.org/tutorials">Tutorials</a>
</li>
<li class="active">
<a href="https://pytorch.org/docs/stable/index.html">Docs</a>
</li>
<li>
<a href="https://pytorch.org/resources">Resources</a>
</li>
<li>
<a href="https://github.com/pytorch/pytorch">Github</a>
</li>
</ul>
</div>
<a class="main-menu-open-button" href="#" data-behavior="open-mobile-menu"></a>
</div>
</div>
</div>
<body class="pytorch-body">
<div class="table-of-contents-link-wrapper">
<span>Table of Contents</span>
<a href="#" class="toggle-table-of-contents" data-behavior="toggle-table-of-contents"></a>
</div>
<nav data-toggle="wy-nav-shift" class="pytorch-left-menu" id="pytorch-left-menu">
<div class="pytorch-side-scroll">
<div class="pytorch-menu pytorch-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<div class="pytorch-left-menu-search">
<div class="version">
<a href='http://pytorch.org/docs/versions.html'>1.0.1 ▼</a>
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="search.html" method="get">
<input type="text" name="q" placeholder="Search Docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<p class="caption"><span class="caption-text">Notes</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="notes/autograd.html">Autograd mechanics</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/broadcasting.html">Broadcasting semantics</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/cuda.html">CUDA semantics</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/extending.html">Extending PyTorch</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/faq.html">Frequently Asked Questions</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/multiprocessing.html">Multiprocessing best practices</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/randomness.html">Reproducibility</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/serialization.html">Serialization semantics</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/windows.html">Windows FAQ</a></li>
</ul>
<p class="caption"><span class="caption-text">Community</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="community/contribution_guide.html">PyTorch Contribution Guide</a></li>
<li class="toctree-l1"><a class="reference internal" href="community/governance.html">PyTorch Governance</a></li>
<li class="toctree-l1"><a class="reference internal" href="community/persons_of_interest.html">PyTorch Governance | Persons of Interest</a></li>
</ul>
<p class="caption"><span class="caption-text">Package Reference</span></p>
<ul class="current">
<li class="toctree-l1 current"><a class="current reference internal" href="#">torch</a></li>
<li class="toctree-l1"><a class="reference internal" href="tensors.html">torch.Tensor</a></li>
<li class="toctree-l1"><a class="reference internal" href="tensor_attributes.html">Tensor Attributes</a></li>
<li class="toctree-l1"><a class="reference internal" href="type_info.html">Type Info</a></li>
<li class="toctree-l1"><a class="reference internal" href="sparse.html">torch.sparse</a></li>
<li class="toctree-l1"><a class="reference internal" href="cuda.html">torch.cuda</a></li>
<li class="toctree-l1"><a class="reference internal" href="storage.html">torch.Storage</a></li>
<li class="toctree-l1"><a class="reference internal" href="nn.html">torch.nn</a></li>
<li class="toctree-l1"><a class="reference internal" href="nn.html#torch-nn-functional">torch.nn.functional</a></li>
<li class="toctree-l1"><a class="reference internal" href="nn.html#torch-nn-init">torch.nn.init</a></li>
<li class="toctree-l1"><a class="reference internal" href="optim.html">torch.optim</a></li>
<li class="toctree-l1"><a class="reference internal" href="autograd.html">torch.autograd</a></li>
<li class="toctree-l1"><a class="reference internal" href="distributed.html">torch.distributed</a></li>
<li class="toctree-l1"><a class="reference internal" href="distributions.html">torch.distributions</a></li>
<li class="toctree-l1"><a class="reference internal" href="jit.html">torch.jit</a></li>
<li class="toctree-l1"><a class="reference internal" href="multiprocessing.html">torch.multiprocessing</a></li>
<li class="toctree-l1"><a class="reference internal" href="bottleneck.html">torch.utils.bottleneck</a></li>
<li class="toctree-l1"><a class="reference internal" href="checkpoint.html">torch.utils.checkpoint</a></li>
<li class="toctree-l1"><a class="reference internal" href="cpp_extension.html">torch.utils.cpp_extension</a></li>
<li class="toctree-l1"><a class="reference internal" href="data.html">torch.utils.data</a></li>
<li class="toctree-l1"><a class="reference internal" href="dlpack.html">torch.utils.dlpack</a></li>
<li class="toctree-l1"><a class="reference internal" href="ffi.html">torch.utils.ffi</a></li>
<li class="toctree-l1"><a class="reference internal" href="hub.html">torch.hub</a></li>
<li class="toctree-l1"><a class="reference internal" href="model_zoo.html">torch.utils.model_zoo</a></li>
<li class="toctree-l1"><a class="reference internal" href="onnx.html">torch.onnx</a></li>
<li class="toctree-l1"><a class="reference internal" href="distributed_deprecated.html">torch.distributed.deprecated</a></li>
<li class="toctree-l1"><a class="reference internal" href="legacy.html">torch.legacy</a></li>
</ul>
<p class="caption"><span class="caption-text">torchvision Reference</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="torchvision/index.html">torchvision</a></li>
</ul>
</div>
</div>
</nav>
<div class="pytorch-container">
<div class="pytorch-page-level-bar" id="pytorch-page-level-bar">
<div class="pytorch-breadcrumbs-wrapper">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="pytorch-breadcrumbs">
<li>
<a href="index.html">
Docs
</a> >
</li>
<li>torch</li>
<li class="pytorch-breadcrumbs-aside">
<a href="_sources/torch.rst.txt" rel="nofollow"><img src="_static/images/view-page-source-icon.svg"></a>
</li>
</ul>
</div>
</div>
<div class="pytorch-shortcuts-wrapper" id="pytorch-shortcuts-wrapper">
Shortcuts
</div>
</div>
<section data-toggle="wy-nav-shift" id="pytorch-content-wrap" class="pytorch-content-wrap">
<div class="pytorch-content-left">
<div class="rst-content">
<div role="main" class="main-content" itemscope="itemscope" itemtype="http://schema.org/Article">
<article itemprop="articleBody" id="pytorch-article" class="pytorch-article">
<div class="section" id="module-torch">
<span id="torch"></span><h1>torch<a class="headerlink" href="#module-torch" title="Permalink to this headline">¶</a></h1>
<p>The torch package contains data structures for multi-dimensional
tensors and mathematical operations over these are defined.
Additionally, it provides many utilities for efficient serializing of
Tensors and arbitrary types, and other useful utilities.</p>
<p>It has a CUDA counterpart, that enables you to run your tensor computations
on an NVIDIA GPU with compute capability >= 3.0.</p>
<div class="section" id="tensors">
<h2>Tensors<a class="headerlink" href="#tensors" title="Permalink to this headline">¶</a></h2>
<dl class="function">
<dt id="torch.is_tensor">
<code class="descclassname">torch.</code><code class="descname">is_tensor</code><span class="sig-paren">(</span><em>obj</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/torch.html#is_tensor"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torch.is_tensor" title="Permalink to this definition">¶</a></dt>
<dd><p>Returns True if <cite>obj</cite> is a PyTorch tensor.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>obj</strong> (<em>Object</em>) – Object to test</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="function">
<dt id="torch.is_storage">
<code class="descclassname">torch.</code><code class="descname">is_storage</code><span class="sig-paren">(</span><em>obj</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/torch.html#is_storage"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torch.is_storage" title="Permalink to this definition">¶</a></dt>
<dd><p>Returns True if <cite>obj</cite> is a PyTorch storage object.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>obj</strong> (<em>Object</em>) – Object to test</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="function">
<dt id="torch.set_default_dtype">
<code class="descclassname">torch.</code><code class="descname">set_default_dtype</code><span class="sig-paren">(</span><em>d</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/torch.html#set_default_dtype"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torch.set_default_dtype" title="Permalink to this definition">¶</a></dt>
<dd><p>Sets the default floating point dtype to <code class="xref py py-attr docutils literal"><span class="pre">d</span></code>. This type will be
used as default floating point type for type inference in
<a class="reference internal" href="#torch.tensor" title="torch.tensor"><code class="xref py py-func docutils literal"><span class="pre">torch.tensor()</span></code></a>.</p>
<p>The default floating point dtype is initially <code class="docutils literal"><span class="pre">torch.float32</span></code>.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>d</strong> (<a class="reference internal" href="tensor_attributes.html#torch.torch.dtype" title="torch.torch.dtype"><code class="xref py py-class docutils literal"><span class="pre">torch.dtype</span></code></a>) – the floating point dtype to make the default</td>
</tr>
</tbody>
</table>
<p>Example:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">torch</span><span class="o">.</span><span class="n">tensor</span><span class="p">([</span><span class="mf">1.2</span><span class="p">,</span> <span class="mi">3</span><span class="p">])</span><span class="o">.</span><span class="n">dtype</span> <span class="c1"># initial default for floating point is torch.float32</span>
<span class="go">torch.float32</span>
<span class="gp">>>> </span><span class="n">torch</span><span class="o">.</span><span class="n">set_default_dtype</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">float64</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">torch</span><span class="o">.</span><span class="n">tensor</span><span class="p">([</span><span class="mf">1.2</span><span class="p">,</span> <span class="mi">3</span><span class="p">])</span><span class="o">.</span><span class="n">dtype</span> <span class="c1"># a new floating point tensor</span>
<span class="go">torch.float64</span>
</pre></div>
</div>
</dd></dl>
<dl class="function">
<dt id="torch.get_default_dtype">
<code class="descclassname">torch.</code><code class="descname">get_default_dtype</code><span class="sig-paren">(</span><span class="sig-paren">)</span> → torch.dtype<a class="headerlink" href="#torch.get_default_dtype" title="Permalink to this definition">¶</a></dt>
<dd><p>Get the current default floating point <a class="reference internal" href="tensor_attributes.html#torch.torch.dtype" title="torch.torch.dtype"><code class="xref py py-class docutils literal"><span class="pre">torch.dtype</span></code></a>.</p>
<p>Example:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">torch</span><span class="o">.</span><span class="n">get_default_dtype</span><span class="p">()</span> <span class="c1"># initial default for floating point is torch.float32</span>
<span class="go">torch.float32</span>
<span class="gp">>>> </span><span class="n">torch</span><span class="o">.</span><span class="n">set_default_dtype</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">float64</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">torch</span><span class="o">.</span><span class="n">get_default_dtype</span><span class="p">()</span> <span class="c1"># default is now changed to torch.float64</span>
<span class="go">torch.float64</span>
<span class="gp">>>> </span><span class="n">torch</span><span class="o">.</span><span class="n">set_default_tensor_type</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">FloatTensor</span><span class="p">)</span> <span class="c1"># setting tensor type also affects this</span>
<span class="gp">>>> </span><span class="n">torch</span><span class="o">.</span><span class="n">get_default_dtype</span><span class="p">()</span> <span class="c1"># changed to torch.float32, the dtype for torch.FloatTensor</span>
<span class="go">torch.float32</span>
</pre></div>
</div>
</dd></dl>
<dl class="function">
<dt id="torch.set_default_tensor_type">
<code class="descclassname">torch.</code><code class="descname">set_default_tensor_type</code><span class="sig-paren">(</span><em>t</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/torch.html#set_default_tensor_type"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torch.set_default_tensor_type" title="Permalink to this definition">¶</a></dt>
<dd><p>Sets the default <code class="docutils literal"><span class="pre">torch.Tensor</span></code> type to floating point tensor type
<a class="reference internal" href="#torch.t" title="torch.t"><code class="xref py py-attr docutils literal"><span class="pre">t</span></code></a>. This type will also be used as default floating point type for
type inference in <a class="reference internal" href="#torch.tensor" title="torch.tensor"><code class="xref py py-func docutils literal"><span class="pre">torch.tensor()</span></code></a>.</p>
<p>The default floating point tensor type is initially <code class="docutils literal"><span class="pre">torch.FloatTensor</span></code>.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>t</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#type" title="(in Python v3.7)"><em>type</em></a><em> or </em><a class="reference external" href="https://docs.python.org/3/library/string.html#module-string" title="(in Python v3.7)"><em>string</em></a>) – the floating point tensor type or its name</td>
</tr>
</tbody>
</table>
<p>Example:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">torch</span><span class="o">.</span><span class="n">tensor</span><span class="p">([</span><span class="mf">1.2</span><span class="p">,</span> <span class="mi">3</span><span class="p">])</span><span class="o">.</span><span class="n">dtype</span> <span class="c1"># initial default for floating point is torch.float32</span>
<span class="go">torch.float32</span>
<span class="gp">>>> </span><span class="n">torch</span><span class="o">.</span><span class="n">set_default_tensor_type</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">DoubleTensor</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">torch</span><span class="o">.</span><span class="n">tensor</span><span class="p">([</span><span class="mf">1.2</span><span class="p">,</span> <span class="mi">3</span><span class="p">])</span><span class="o">.</span><span class="n">dtype</span> <span class="c1"># a new floating point tensor</span>
<span class="go">torch.float64</span>
</pre></div>
</div>
</dd></dl>
<dl class="function">
<dt id="torch.numel">
<code class="descclassname">torch.</code><code class="descname">numel</code><span class="sig-paren">(</span><em>input</em><span class="sig-paren">)</span> → int<a class="headerlink" href="#torch.numel" title="Permalink to this definition">¶</a></dt>
<dd><p>Returns the total number of elements in the <code class="xref py py-attr docutils literal"><span class="pre">input</span></code> tensor.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>input</strong> (<a class="reference internal" href="tensors.html#torch.Tensor" title="torch.Tensor"><em>Tensor</em></a>) – the input tensor</td>
</tr>
</tbody>
</table>
<p>Example:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">a</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">randn</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">torch</span><span class="o">.</span><span class="n">numel</span><span class="p">(</span><span class="n">a</span><span class="p">)</span>
<span class="go">120</span>
<span class="gp">>>> </span><span class="n">a</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="mi">4</span><span class="p">,</span><span class="mi">4</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">torch</span><span class="o">.</span><span class="n">numel</span><span class="p">(</span><span class="n">a</span><span class="p">)</span>
<span class="go">16</span>
</pre></div>
</div>
</dd></dl>
<dl class="function">
<dt id="torch.set_printoptions">
<code class="descclassname">torch.</code><code class="descname">set_printoptions</code><span class="sig-paren">(</span><em>precision=None</em>, <em>threshold=None</em>, <em>edgeitems=None</em>, <em>linewidth=None</em>, <em>profile=None</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/torch/_tensor_str.html#set_printoptions"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torch.set_printoptions" title="Permalink to this definition">¶</a></dt>
<dd><p>Set options for printing. Items shamelessly taken from NumPy</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>precision</strong> – Number of digits of precision for floating point output
(default = 4).</li>
<li><strong>threshold</strong> – Total number of array elements which trigger summarization
rather than full <cite>repr</cite> (default = 1000).</li>
<li><strong>edgeitems</strong> – Number of array items in summary at beginning and end of
each dimension (default = 3).</li>
<li><strong>linewidth</strong> – The number of characters per line for the purpose of
inserting line breaks (default = 80). Thresholded matrices will
ignore this parameter.</li>
<li><strong>profile</strong> – Sane defaults for pretty printing. Can override with any of
the above options. (any one of <cite>default</cite>, <cite>short</cite>, <cite>full</cite>)</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="function">
<dt id="torch.set_flush_denormal">
<code class="descclassname">torch.</code><code class="descname">set_flush_denormal</code><span class="sig-paren">(</span><em>mode</em><span class="sig-paren">)</span> → bool<a class="headerlink" href="#torch.set_flush_denormal" title="Permalink to this definition">¶</a></dt>
<dd><p>Disables denormal floating numbers on CPU.</p>
<p>Returns <code class="docutils literal"><span class="pre">True</span></code> if your system supports flushing denormal numbers and it
successfully configures flush denormal mode. <a class="reference internal" href="#torch.set_flush_denormal" title="torch.set_flush_denormal"><code class="xref py py-meth docutils literal"><span class="pre">set_flush_denormal()</span></code></a>
is only supported on x86 architectures supporting SSE3.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>mode</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.7)"><em>bool</em></a>) – Controls whether to enable flush denormal mode or not</td>
</tr>
</tbody>
</table>
<p>Example:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">torch</span><span class="o">.</span><span class="n">set_flush_denormal</span><span class="p">(</span><span class="kc">True</span><span class="p">)</span>
<span class="go">True</span>
<span class="gp">>>> </span><span class="n">torch</span><span class="o">.</span><span class="n">tensor</span><span class="p">([</span><span class="mf">1e-323</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">float64</span><span class="p">)</span>
<span class="go">tensor([ 0.], dtype=torch.float64)</span>
<span class="gp">>>> </span><span class="n">torch</span><span class="o">.</span><span class="n">set_flush_denormal</span><span class="p">(</span><span class="kc">False</span><span class="p">)</span>
<span class="go">True</span>
<span class="gp">>>> </span><span class="n">torch</span><span class="o">.</span><span class="n">tensor</span><span class="p">([</span><span class="mf">1e-323</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">float64</span><span class="p">)</span>
<span class="go">tensor(9.88131e-324 *</span>
<span class="go"> [ 1.0000], dtype=torch.float64)</span>
</pre></div>
</div>
</dd></dl>
<div class="section" id="creation-ops">
<span id="tensor-creation-ops"></span><h3>Creation Ops<a class="headerlink" href="#creation-ops" title="Permalink to this headline">¶</a></h3>
<div class="admonition note">
<p class="first admonition-title">Note</p>
<p class="last">Random sampling creation ops are listed under <a class="reference internal" href="#random-sampling"><span class="std std-ref">Random sampling</span></a> and
include:
<a class="reference internal" href="#torch.rand" title="torch.rand"><code class="xref py py-func docutils literal"><span class="pre">torch.rand()</span></code></a>
<a class="reference internal" href="#torch.rand_like" title="torch.rand_like"><code class="xref py py-func docutils literal"><span class="pre">torch.rand_like()</span></code></a>
<a class="reference internal" href="#torch.randn" title="torch.randn"><code class="xref py py-func docutils literal"><span class="pre">torch.randn()</span></code></a>
<a class="reference internal" href="#torch.randn_like" title="torch.randn_like"><code class="xref py py-func docutils literal"><span class="pre">torch.randn_like()</span></code></a>
<a class="reference internal" href="#torch.randint" title="torch.randint"><code class="xref py py-func docutils literal"><span class="pre">torch.randint()</span></code></a>
<a class="reference internal" href="#torch.randint_like" title="torch.randint_like"><code class="xref py py-func docutils literal"><span class="pre">torch.randint_like()</span></code></a>
<a class="reference internal" href="#torch.randperm" title="torch.randperm"><code class="xref py py-func docutils literal"><span class="pre">torch.randperm()</span></code></a>
You may also use <a class="reference internal" href="#torch.empty" title="torch.empty"><code class="xref py py-func docutils literal"><span class="pre">torch.empty()</span></code></a> with the <a class="reference internal" href="#inplace-random-sampling"><span class="std std-ref">In-place random sampling</span></a>
methods to create <a class="reference internal" href="tensors.html#torch.Tensor" title="torch.Tensor"><code class="xref py py-class docutils literal"><span class="pre">torch.Tensor</span></code></a> s with values sampled from a broader
range of distributions.</p>
</div>
<dl class="function">
<dt id="torch.tensor">
<code class="descclassname">torch.</code><code class="descname">tensor</code><span class="sig-paren">(</span><em>data</em>, <em>dtype=None</em>, <em>device=None</em>, <em>requires_grad=False</em><span class="sig-paren">)</span> → Tensor<a class="headerlink" href="#torch.tensor" title="Permalink to this definition">¶</a></dt>
<dd><p>Constructs a tensor with <code class="xref py py-attr docutils literal"><span class="pre">data</span></code>.</p>
<div class="admonition warning">
<p class="first admonition-title">Warning</p>
<p class="last"><a class="reference internal" href="#torch.tensor" title="torch.tensor"><code class="xref py py-func docutils literal"><span class="pre">torch.tensor()</span></code></a> always copies <code class="xref py py-attr docutils literal"><span class="pre">data</span></code>. If you have a Tensor
<code class="docutils literal"><span class="pre">data</span></code> and want to avoid a copy, use <a class="reference internal" href="tensors.html#torch.Tensor.requires_grad_" title="torch.Tensor.requires_grad_"><code class="xref py py-func docutils literal"><span class="pre">torch.Tensor.requires_grad_()</span></code></a>
or <a class="reference internal" href="autograd.html#torch.Tensor.detach" title="torch.Tensor.detach"><code class="xref py py-func docutils literal"><span class="pre">torch.Tensor.detach()</span></code></a>.
If you have a NumPy <code class="docutils literal"><span class="pre">ndarray</span></code> and want to avoid a copy, use
<a class="reference internal" href="#torch.from_numpy" title="torch.from_numpy"><code class="xref py py-func docutils literal"><span class="pre">torch.from_numpy()</span></code></a>.</p>
</div>
<div class="admonition warning">
<p class="first admonition-title">Warning</p>
<p class="last">When data is a tensor <cite>x</cite>, <a class="reference internal" href="#torch.tensor" title="torch.tensor"><code class="xref py py-func docutils literal"><span class="pre">torch.tensor()</span></code></a> reads out ‘the data’ from whatever it is passed,
and constructs a leaf variable. Therefore <code class="docutils literal"><span class="pre">torch.tensor(x)</span></code> is equivalent to <code class="docutils literal"><span class="pre">x.clone().detach()</span></code>
and <code class="docutils literal"><span class="pre">torch.tensor(x,</span> <span class="pre">requires_grad=True)</span></code> is equivalent to <code class="docutils literal"><span class="pre">x.clone().detach().requires_grad_(True)</span></code>.
The equivalents using <code class="docutils literal"><span class="pre">clone()</span></code> and <code class="docutils literal"><span class="pre">detach()</span></code> are recommended.</p>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>data</strong> (<em>array_like</em>) – Initial data for the tensor. Can be a list, tuple,
NumPy <code class="docutils literal"><span class="pre">ndarray</span></code>, scalar, and other types.</li>
<li><strong>dtype</strong> (<a class="reference internal" href="tensor_attributes.html#torch.torch.dtype" title="torch.torch.dtype"><code class="xref py py-class docutils literal"><span class="pre">torch.dtype</span></code></a>, optional) – the desired data type of returned tensor.
Default: if <code class="docutils literal"><span class="pre">None</span></code>, infers data type from <code class="xref py py-attr docutils literal"><span class="pre">data</span></code>.</li>
<li><strong>device</strong> (<a class="reference internal" href="tensor_attributes.html#torch.torch.device" title="torch.torch.device"><code class="xref py py-class docutils literal"><span class="pre">torch.device</span></code></a>, optional) – the desired device of returned tensor.
Default: if <code class="docutils literal"><span class="pre">None</span></code>, uses the current device for the default tensor type
(see <a class="reference internal" href="#torch.set_default_tensor_type" title="torch.set_default_tensor_type"><code class="xref py py-func docutils literal"><span class="pre">torch.set_default_tensor_type()</span></code></a>). <code class="xref py py-attr docutils literal"><span class="pre">device</span></code> will be the CPU
for CPU tensor types and the current CUDA device for CUDA tensor types.</li>
<li><strong>requires_grad</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.7)"><em>bool</em></a><em>, </em><em>optional</em>) – If autograd should record operations on the
returned tensor. Default: <code class="docutils literal"><span class="pre">False</span></code>.</li>
</ul>
</td>
</tr>
</tbody>
</table>
<p>Example:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">torch</span><span class="o">.</span><span class="n">tensor</span><span class="p">([[</span><span class="mf">0.1</span><span class="p">,</span> <span class="mf">1.2</span><span class="p">],</span> <span class="p">[</span><span class="mf">2.2</span><span class="p">,</span> <span class="mf">3.1</span><span class="p">],</span> <span class="p">[</span><span class="mf">4.9</span><span class="p">,</span> <span class="mf">5.2</span><span class="p">]])</span>
<span class="go">tensor([[ 0.1000, 1.2000],</span>
<span class="go"> [ 2.2000, 3.1000],</span>
<span class="go"> [ 4.9000, 5.2000]])</span>
<span class="gp">>>> </span><span class="n">torch</span><span class="o">.</span><span class="n">tensor</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">])</span> <span class="c1"># Type inference on data</span>
<span class="go">tensor([ 0, 1])</span>
<span class="gp">>>> </span><span class="n">torch</span><span class="o">.</span><span class="n">tensor</span><span class="p">([[</span><span class="mf">0.11111</span><span class="p">,</span> <span class="mf">0.222222</span><span class="p">,</span> <span class="mf">0.3333333</span><span class="p">]],</span>
<span class="go"> dtype=torch.float64,</span>
<span class="go"> device=torch.device('cuda:0')) # creates a torch.cuda.DoubleTensor</span>
<span class="go">tensor([[ 0.1111, 0.2222, 0.3333]], dtype=torch.float64, device='cuda:0')</span>
<span class="gp">>>> </span><span class="n">torch</span><span class="o">.</span><span class="n">tensor</span><span class="p">(</span><span class="mf">3.14159</span><span class="p">)</span> <span class="c1"># Create a scalar (zero-dimensional tensor)</span>
<span class="go">tensor(3.1416)</span>
<span class="gp">>>> </span><span class="n">torch</span><span class="o">.</span><span class="n">tensor</span><span class="p">([])</span> <span class="c1"># Create an empty tensor (of size (0,))</span>
<span class="go">tensor([])</span>
</pre></div>
</div>
</dd></dl>
<dl class="function">
<dt id="torch.sparse_coo_tensor">
<code class="descclassname">torch.</code><code class="descname">sparse_coo_tensor</code><span class="sig-paren">(</span><em>indices</em>, <em>values</em>, <em>size=None</em>, <em>dtype=None</em>, <em>device=None</em>, <em>requires_grad=False</em><span class="sig-paren">)</span> → Tensor<a class="headerlink" href="#torch.sparse_coo_tensor" title="Permalink to this definition">¶</a></dt>
<dd><p>Constructs a sparse tensors in COO(rdinate) format with non-zero elements at the given <code class="xref py py-attr docutils literal"><span class="pre">indices</span></code>
with the given <code class="xref py py-attr docutils literal"><span class="pre">values</span></code>. A sparse tensor can be <cite>uncoalesced</cite>, in that case, there are duplicate
coordinates in the indices, and the value at that index is the sum of all duplicate value entries:
<a class="reference external" href="https://pytorch.org/docs/stable/sparse.html">torch.sparse</a>.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>indices</strong> (<em>array_like</em>) – Initial data for the tensor. Can be a list, tuple,
NumPy <code class="docutils literal"><span class="pre">ndarray</span></code>, scalar, and other types. Will be cast to a <code class="xref py py-class docutils literal"><span class="pre">torch.LongTensor</span></code>
internally. The indices are the coordinates of the non-zero values in the matrix, and thus
should be two-dimensional where the first dimension is the number of tensor dimensions and
the second dimension is the number of non-zero values.</li>
<li><strong>values</strong> (<em>array_like</em>) – Initial values for the tensor. Can be a list, tuple,
NumPy <code class="docutils literal"><span class="pre">ndarray</span></code>, scalar, and other types.</li>
<li><strong>size</strong> (list, tuple, or <code class="xref py py-class docutils literal"><span class="pre">torch.Size</span></code>, optional) – Size of the sparse tensor. If not
provided the size will be inferred as the minimum size big enough to hold all non-zero
elements.</li>
<li><strong>dtype</strong> (<a class="reference internal" href="tensor_attributes.html#torch.torch.dtype" title="torch.torch.dtype"><code class="xref py py-class docutils literal"><span class="pre">torch.dtype</span></code></a>, optional) – the desired data type of returned tensor.
Default: if None, infers data type from <code class="xref py py-attr docutils literal"><span class="pre">values</span></code>.</li>
<li><strong>device</strong> (<a class="reference internal" href="tensor_attributes.html#torch.torch.device" title="torch.torch.device"><code class="xref py py-class docutils literal"><span class="pre">torch.device</span></code></a>, optional) – the desired device of returned tensor.
Default: if None, uses the current device for the default tensor type
(see <a class="reference internal" href="#torch.set_default_tensor_type" title="torch.set_default_tensor_type"><code class="xref py py-func docutils literal"><span class="pre">torch.set_default_tensor_type()</span></code></a>). <code class="xref py py-attr docutils literal"><span class="pre">device</span></code> will be the CPU
for CPU tensor types and the current CUDA device for CUDA tensor types.</li>
<li><strong>requires_grad</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.7)"><em>bool</em></a><em>, </em><em>optional</em>) – If autograd should record operations on the
returned tensor. Default: <code class="docutils literal"><span class="pre">False</span></code>.</li>
</ul>
</td>
</tr>
</tbody>
</table>
<p>Example:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">i</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">tensor</span><span class="p">([[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span>
<span class="go"> [2, 0, 2]])</span>
<span class="gp">>>> </span><span class="n">v</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">tensor</span><span class="p">([</span><span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">float32</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">torch</span><span class="o">.</span><span class="n">sparse_coo_tensor</span><span class="p">(</span><span class="n">i</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">4</span><span class="p">])</span>
<span class="go">tensor(indices=tensor([[0, 1, 1],</span>
<span class="go"> [2, 0, 2]]),</span>
<span class="go"> values=tensor([3., 4., 5.]),</span>
<span class="go"> size=(2, 4), nnz=3, layout=torch.sparse_coo)</span>
<span class="gp">>>> </span><span class="n">torch</span><span class="o">.</span><span class="n">sparse_coo_tensor</span><span class="p">(</span><span class="n">i</span><span class="p">,</span> <span class="n">v</span><span class="p">)</span> <span class="c1"># Shape inference</span>
<span class="go">tensor(indices=tensor([[0, 1, 1],</span>
<span class="go"> [2, 0, 2]]),</span>
<span class="go"> values=tensor([3., 4., 5.]),</span>
<span class="go"> size=(2, 3), nnz=3, layout=torch.sparse_coo)</span>
<span class="gp">>>> </span><span class="n">torch</span><span class="o">.</span><span class="n">sparse_coo_tensor</span><span class="p">(</span><span class="n">i</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">4</span><span class="p">],</span>
<span class="go"> dtype=torch.float64,</span>
<span class="go"> device=torch.device('cuda:0'))</span>
<span class="go">tensor(indices=tensor([[0, 1, 1],</span>
<span class="go"> [2, 0, 2]]),</span>
<span class="go"> values=tensor([3., 4., 5.]),</span>
<span class="go"> device='cuda:0', size=(2, 4), nnz=3, dtype=torch.float64,</span>
<span class="go"> layout=torch.sparse_coo)</span>
<span class="go"># Create an empty sparse tensor with the following invariants:</span>
<span class="go"># 1. sparse_dim + dense_dim = len(SparseTensor.shape)</span>
<span class="go"># 2. SparseTensor._indices().shape = (sparse_dim, nnz)</span>
<span class="go"># 3. SparseTensor._values().shape = (nnz, SparseTensor.shape[sparse_dim:])</span>
<span class="go">#</span>
<span class="go"># For instance, to create an empty sparse tensor with nnz = 0, dense_dim = 0 and</span>
<span class="go"># sparse_dim = 1 (hence indices is a 2D tensor of shape = (1, 0))</span>
<span class="gp">>>> </span><span class="n">S</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">sparse_coo_tensor</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">empty</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">]),</span> <span class="p">[],</span> <span class="p">[</span><span class="mi">1</span><span class="p">])</span>
<span class="go">tensor(indices=tensor([], size=(1, 0)),</span>
<span class="go"> values=tensor([], size=(0,)),</span>
<span class="go"> size=(1,), nnz=0, layout=torch.sparse_coo)</span>
<span class="go"># and to create an empty sparse tensor with nnz = 0, dense_dim = 1 and</span>
<span class="go"># sparse_dim = 1</span>
<span class="gp">>>> </span><span class="n">S</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">sparse_coo_tensor</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">empty</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">]),</span> <span class="n">torch</span><span class="o">.</span><span class="n">empty</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">]),</span> <span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">])</span>
<span class="go">tensor(indices=tensor([], size=(1, 0)),</span>
<span class="go"> values=tensor([], size=(0, 2)),</span>
<span class="go"> size=(1, 2), nnz=0, layout=torch.sparse_coo)</span>
</pre></div>
</div>
</dd></dl>
<dl class="function">
<dt id="torch.as_tensor">
<code class="descclassname">torch.</code><code class="descname">as_tensor</code><span class="sig-paren">(</span><em>data</em>, <em>dtype=None</em>, <em>device=None</em><span class="sig-paren">)</span> → Tensor<a class="headerlink" href="#torch.as_tensor" title="Permalink to this definition">¶</a></dt>
<dd><p>Convert the data into a <cite>torch.Tensor</cite>. If the data is already a <cite>Tensor</cite> with the same <cite>dtype</cite> and <cite>device</cite>,
no copy will be performed, otherwise a new <cite>Tensor</cite> will be returned with computational graph retained if data
<cite>Tensor</cite> has <code class="docutils literal"><span class="pre">requires_grad=True</span></code>. Similarly, if the data is an <code class="docutils literal"><span class="pre">ndarray</span></code> of the corresponding <cite>dtype</cite> and
the <cite>device</cite> is the cpu, no copy will be performed.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>data</strong> (<em>array_like</em>) – Initial data for the tensor. Can be a list, tuple,
NumPy <code class="docutils literal"><span class="pre">ndarray</span></code>, scalar, and other types.</li>
<li><strong>dtype</strong> (<a class="reference internal" href="tensor_attributes.html#torch.torch.dtype" title="torch.torch.dtype"><code class="xref py py-class docutils literal"><span class="pre">torch.dtype</span></code></a>, optional) – the desired data type of returned tensor.
Default: if <code class="docutils literal"><span class="pre">None</span></code>, infers data type from <code class="xref py py-attr docutils literal"><span class="pre">data</span></code>.</li>
<li><strong>device</strong> (<a class="reference internal" href="tensor_attributes.html#torch.torch.device" title="torch.torch.device"><code class="xref py py-class docutils literal"><span class="pre">torch.device</span></code></a>, optional) – the desired device of returned tensor.
Default: if <code class="docutils literal"><span class="pre">None</span></code>, uses the current device for the default tensor type
(see <a class="reference internal" href="#torch.set_default_tensor_type" title="torch.set_default_tensor_type"><code class="xref py py-func docutils literal"><span class="pre">torch.set_default_tensor_type()</span></code></a>). <code class="xref py py-attr docutils literal"><span class="pre">device</span></code> will be the CPU
for CPU tensor types and the current CUDA device for CUDA tensor types.</li>
</ul>
</td>
</tr>
</tbody>
</table>
<p>Example:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">a</span> <span class="o">=</span> <span class="n">numpy</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">])</span>
<span class="gp">>>> </span><span class="n">t</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">as_tensor</span><span class="p">(</span><span class="n">a</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">t</span>
<span class="go">tensor([ 1, 2, 3])</span>
<span class="gp">>>> </span><span class="n">t</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">=</span> <span class="o">-</span><span class="mi">1</span>
<span class="gp">>>> </span><span class="n">a</span>
<span class="go">array([-1, 2, 3])</span>
<span class="gp">>>> </span><span class="n">a</span> <span class="o">=</span> <span class="n">numpy</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">])</span>
<span class="gp">>>> </span><span class="n">t</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">as_tensor</span><span class="p">(</span><span class="n">a</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">device</span><span class="p">(</span><span class="s1">'cuda'</span><span class="p">))</span>
<span class="gp">>>> </span><span class="n">t</span>
<span class="go">tensor([ 1, 2, 3])</span>
<span class="gp">>>> </span><span class="n">t</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">=</span> <span class="o">-</span><span class="mi">1</span>
<span class="gp">>>> </span><span class="n">a</span>
<span class="go">array([1, 2, 3])</span>
</pre></div>
</div>
</dd></dl>
<dl class="function">
<dt id="torch.from_numpy">
<code class="descclassname">torch.</code><code class="descname">from_numpy</code><span class="sig-paren">(</span><em>ndarray</em><span class="sig-paren">)</span> → Tensor<a class="headerlink" href="#torch.from_numpy" title="Permalink to this definition">¶</a></dt>
<dd><p>Creates a <a class="reference internal" href="tensors.html#torch.Tensor" title="torch.Tensor"><code class="xref py py-class docutils literal"><span class="pre">Tensor</span></code></a> from a <a class="reference external" href="https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray" title="(in NumPy v1.16)"><code class="xref py py-class docutils literal"><span class="pre">numpy.ndarray</span></code></a>.</p>
<p>The returned tensor and <code class="xref py py-attr docutils literal"><span class="pre">ndarray</span></code> share the same memory. Modifications to
the tensor will be reflected in the <code class="xref py py-attr docutils literal"><span class="pre">ndarray</span></code> and vice versa. The returned
tensor is not resizable.</p>
<p>Example:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">a</span> <span class="o">=</span> <span class="n">numpy</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">])</span>
<span class="gp">>>> </span><span class="n">t</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">from_numpy</span><span class="p">(</span><span class="n">a</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">t</span>
<span class="go">tensor([ 1, 2, 3])</span>
<span class="gp">>>> </span><span class="n">t</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">=</span> <span class="o">-</span><span class="mi">1</span>
<span class="gp">>>> </span><span class="n">a</span>
<span class="go">array([-1, 2, 3])</span>
</pre></div>
</div>
</dd></dl>
<dl class="function">
<dt id="torch.zeros">
<code class="descclassname">torch.</code><code class="descname">zeros</code><span class="sig-paren">(</span><em>*sizes</em>, <em>out=None</em>, <em>dtype=None</em>, <em>layout=torch.strided</em>, <em>device=None</em>, <em>requires_grad=False</em><span class="sig-paren">)</span> → Tensor<a class="headerlink" href="#torch.zeros" title="Permalink to this definition">¶</a></dt>
<dd><p>Returns a tensor filled with the scalar value <cite>0</cite>, with the shape defined
by the variable argument <code class="xref py py-attr docutils literal"><span class="pre">sizes</span></code>.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>sizes</strong> (<em>int...</em>) – a sequence of integers defining the shape of the output tensor.
Can be a variable number of arguments or a collection like a list or tuple.</li>
<li><strong>out</strong> (<a class="reference internal" href="tensors.html#torch.Tensor" title="torch.Tensor"><em>Tensor</em></a><em>, </em><em>optional</em>) – the output tensor</li>
<li><strong>dtype</strong> (<a class="reference internal" href="tensor_attributes.html#torch.torch.dtype" title="torch.torch.dtype"><code class="xref py py-class docutils literal"><span class="pre">torch.dtype</span></code></a>, optional) – the desired data type of returned tensor.
Default: if <code class="docutils literal"><span class="pre">None</span></code>, uses a global default (see <a class="reference internal" href="#torch.set_default_tensor_type" title="torch.set_default_tensor_type"><code class="xref py py-func docutils literal"><span class="pre">torch.set_default_tensor_type()</span></code></a>).</li>
<li><strong>layout</strong> (<a class="reference internal" href="tensor_attributes.html#torch.torch.layout" title="torch.torch.layout"><code class="xref py py-class docutils literal"><span class="pre">torch.layout</span></code></a>, optional) – the desired layout of returned Tensor.
Default: <code class="docutils literal"><span class="pre">torch.strided</span></code>.</li>
<li><strong>device</strong> (<a class="reference internal" href="tensor_attributes.html#torch.torch.device" title="torch.torch.device"><code class="xref py py-class docutils literal"><span class="pre">torch.device</span></code></a>, optional) – the desired device of returned tensor.
Default: if <code class="docutils literal"><span class="pre">None</span></code>, uses the current device for the default tensor type
(see <a class="reference internal" href="#torch.set_default_tensor_type" title="torch.set_default_tensor_type"><code class="xref py py-func docutils literal"><span class="pre">torch.set_default_tensor_type()</span></code></a>). <code class="xref py py-attr docutils literal"><span class="pre">device</span></code> will be the CPU
for CPU tensor types and the current CUDA device for CUDA tensor types.</li>
<li><strong>requires_grad</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.7)"><em>bool</em></a><em>, </em><em>optional</em>) – If autograd should record operations on the
returned tensor. Default: <code class="docutils literal"><span class="pre">False</span></code>.</li>
</ul>
</td>
</tr>
</tbody>
</table>
<p>Example:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">torch</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">)</span>
<span class="go">tensor([[ 0., 0., 0.],</span>
<span class="go"> [ 0., 0., 0.]])</span>
<span class="gp">>>> </span><span class="n">torch</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="mi">5</span><span class="p">)</span>
<span class="go">tensor([ 0., 0., 0., 0., 0.])</span>
</pre></div>
</div>
</dd></dl>
<dl class="function">
<dt id="torch.zeros_like">
<code class="descclassname">torch.</code><code class="descname">zeros_like</code><span class="sig-paren">(</span><em>input</em>, <em>dtype=None</em>, <em>layout=None</em>, <em>device=None</em>, <em>requires_grad=False</em><span class="sig-paren">)</span> → Tensor<a class="headerlink" href="#torch.zeros_like" title="Permalink to this definition">¶</a></dt>
<dd><p>Returns a tensor filled with the scalar value <cite>0</cite>, with the same size as
<code class="xref py py-attr docutils literal"><span class="pre">input</span></code>. <code class="docutils literal"><span class="pre">torch.zeros_like(input)</span></code> is equivalent to
<code class="docutils literal"><span class="pre">torch.zeros(input.size(),</span> <span class="pre">dtype=input.dtype,</span> <span class="pre">layout=input.layout,</span> <span class="pre">device=input.device)</span></code>.</p>
<div class="admonition warning">
<p class="first admonition-title">Warning</p>
<p class="last">As of 0.4, this function does not support an <code class="xref py py-attr docutils literal"><span class="pre">out</span></code> keyword. As an alternative,
the old <code class="docutils literal"><span class="pre">torch.zeros_like(input,</span> <span class="pre">out=output)</span></code> is equivalent to
<code class="docutils literal"><span class="pre">torch.zeros(input.size(),</span> <span class="pre">out=output)</span></code>.</p>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>input</strong> (<a class="reference internal" href="tensors.html#torch.Tensor" title="torch.Tensor"><em>Tensor</em></a>) – the size of <code class="xref py py-attr docutils literal"><span class="pre">input</span></code> will determine size of the output tensor</li>
<li><strong>dtype</strong> (<a class="reference internal" href="tensor_attributes.html#torch.torch.dtype" title="torch.torch.dtype"><code class="xref py py-class docutils literal"><span class="pre">torch.dtype</span></code></a>, optional) – the desired data type of returned Tensor.
Default: if <code class="docutils literal"><span class="pre">None</span></code>, defaults to the dtype of <code class="xref py py-attr docutils literal"><span class="pre">input</span></code>.</li>
<li><strong>layout</strong> (<a class="reference internal" href="tensor_attributes.html#torch.torch.layout" title="torch.torch.layout"><code class="xref py py-class docutils literal"><span class="pre">torch.layout</span></code></a>, optional) – the desired layout of returned tensor.
Default: if <code class="docutils literal"><span class="pre">None</span></code>, defaults to the layout of <code class="xref py py-attr docutils literal"><span class="pre">input</span></code>.</li>
<li><strong>device</strong> (<a class="reference internal" href="tensor_attributes.html#torch.torch.device" title="torch.torch.device"><code class="xref py py-class docutils literal"><span class="pre">torch.device</span></code></a>, optional) – the desired device of returned tensor.
Default: if <code class="docutils literal"><span class="pre">None</span></code>, defaults to the device of <code class="xref py py-attr docutils literal"><span class="pre">input</span></code>.</li>
<li><strong>requires_grad</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.7)"><em>bool</em></a><em>, </em><em>optional</em>) – If autograd should record operations on the
returned tensor. Default: <code class="docutils literal"><span class="pre">False</span></code>.</li>
</ul>
</td>
</tr>
</tbody>
</table>
<p>Example:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="nb">input</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">empty</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">torch</span><span class="o">.</span><span class="n">zeros_like</span><span class="p">(</span><span class="nb">input</span><span class="p">)</span>
<span class="go">tensor([[ 0., 0., 0.],</span>
<span class="go"> [ 0., 0., 0.]])</span>
</pre></div>
</div>
</dd></dl>
<dl class="function">
<dt id="torch.ones">
<code class="descclassname">torch.</code><code class="descname">ones</code><span class="sig-paren">(</span><em>*sizes</em>, <em>out=None</em>, <em>dtype=None</em>, <em>layout=torch.strided</em>, <em>device=None</em>, <em>requires_grad=False</em><span class="sig-paren">)</span> → Tensor<a class="headerlink" href="#torch.ones" title="Permalink to this definition">¶</a></dt>
<dd><p>Returns a tensor filled with the scalar value <cite>1</cite>, with the shape defined
by the variable argument <code class="xref py py-attr docutils literal"><span class="pre">sizes</span></code>.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>sizes</strong> (<em>int...</em>) – a sequence of integers defining the shape of the output tensor.
Can be a variable number of arguments or a collection like a list or tuple.</li>
<li><strong>out</strong> (<a class="reference internal" href="tensors.html#torch.Tensor" title="torch.Tensor"><em>Tensor</em></a><em>, </em><em>optional</em>) – the output tensor</li>
<li><strong>dtype</strong> (<a class="reference internal" href="tensor_attributes.html#torch.torch.dtype" title="torch.torch.dtype"><code class="xref py py-class docutils literal"><span class="pre">torch.dtype</span></code></a>, optional) – the desired data type of returned tensor.
Default: if <code class="docutils literal"><span class="pre">None</span></code>, uses a global default (see <a class="reference internal" href="#torch.set_default_tensor_type" title="torch.set_default_tensor_type"><code class="xref py py-func docutils literal"><span class="pre">torch.set_default_tensor_type()</span></code></a>).</li>
<li><strong>layout</strong> (<a class="reference internal" href="tensor_attributes.html#torch.torch.layout" title="torch.torch.layout"><code class="xref py py-class docutils literal"><span class="pre">torch.layout</span></code></a>, optional) – the desired layout of returned Tensor.
Default: <code class="docutils literal"><span class="pre">torch.strided</span></code>.</li>
<li><strong>device</strong> (<a class="reference internal" href="tensor_attributes.html#torch.torch.device" title="torch.torch.device"><code class="xref py py-class docutils literal"><span class="pre">torch.device</span></code></a>, optional) – the desired device of returned tensor.
Default: if <code class="docutils literal"><span class="pre">None</span></code>, uses the current device for the default tensor type
(see <a class="reference internal" href="#torch.set_default_tensor_type" title="torch.set_default_tensor_type"><code class="xref py py-func docutils literal"><span class="pre">torch.set_default_tensor_type()</span></code></a>). <code class="xref py py-attr docutils literal"><span class="pre">device</span></code> will be the CPU
for CPU tensor types and the current CUDA device for CUDA tensor types.</li>
<li><strong>requires_grad</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.7)"><em>bool</em></a><em>, </em><em>optional</em>) – If autograd should record operations on the
returned tensor. Default: <code class="docutils literal"><span class="pre">False</span></code>.</li>
</ul>
</td>
</tr>
</tbody>
</table>
<p>Example:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">torch</span><span class="o">.</span><span class="n">ones</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">)</span>
<span class="go">tensor([[ 1., 1., 1.],</span>
<span class="go"> [ 1., 1., 1.]])</span>
<span class="gp">>>> </span><span class="n">torch</span><span class="o">.</span><span class="n">ones</span><span class="p">(</span><span class="mi">5</span><span class="p">)</span>
<span class="go">tensor([ 1., 1., 1., 1., 1.])</span>
</pre></div>
</div>
</dd></dl>
<dl class="function">
<dt id="torch.ones_like">
<code class="descclassname">torch.</code><code class="descname">ones_like</code><span class="sig-paren">(</span><em>input</em>, <em>dtype=None</em>, <em>layout=None</em>, <em>device=None</em>, <em>requires_grad=False</em><span class="sig-paren">)</span> → Tensor<a class="headerlink" href="#torch.ones_like" title="Permalink to this definition">¶</a></dt>
<dd><p>Returns a tensor filled with the scalar value <cite>1</cite>, with the same size as
<code class="xref py py-attr docutils literal"><span class="pre">input</span></code>. <code class="docutils literal"><span class="pre">torch.ones_like(input)</span></code> is equivalent to
<code class="docutils literal"><span class="pre">torch.ones(input.size(),</span> <span class="pre">dtype=input.dtype,</span> <span class="pre">layout=input.layout,</span> <span class="pre">device=input.device)</span></code>.</p>
<div class="admonition warning">
<p class="first admonition-title">Warning</p>
<p class="last">As of 0.4, this function does not support an <code class="xref py py-attr docutils literal"><span class="pre">out</span></code> keyword. As an alternative,
the old <code class="docutils literal"><span class="pre">torch.ones_like(input,</span> <span class="pre">out=output)</span></code> is equivalent to
<code class="docutils literal"><span class="pre">torch.ones(input.size(),</span> <span class="pre">out=output)</span></code>.</p>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>input</strong> (<a class="reference internal" href="tensors.html#torch.Tensor" title="torch.Tensor"><em>Tensor</em></a>) – the size of <code class="xref py py-attr docutils literal"><span class="pre">input</span></code> will determine size of the output tensor</li>
<li><strong>dtype</strong> (<a class="reference internal" href="tensor_attributes.html#torch.torch.dtype" title="torch.torch.dtype"><code class="xref py py-class docutils literal"><span class="pre">torch.dtype</span></code></a>, optional) – the desired data type of returned Tensor.
Default: if <code class="docutils literal"><span class="pre">None</span></code>, defaults to the dtype of <code class="xref py py-attr docutils literal"><span class="pre">input</span></code>.</li>
<li><strong>layout</strong> (<a class="reference internal" href="tensor_attributes.html#torch.torch.layout" title="torch.torch.layout"><code class="xref py py-class docutils literal"><span class="pre">torch.layout</span></code></a>, optional) – the desired layout of returned tensor.
Default: if <code class="docutils literal"><span class="pre">None</span></code>, defaults to the layout of <code class="xref py py-attr docutils literal"><span class="pre">input</span></code>.</li>
<li><strong>device</strong> (<a class="reference internal" href="tensor_attributes.html#torch.torch.device" title="torch.torch.device"><code class="xref py py-class docutils literal"><span class="pre">torch.device</span></code></a>, optional) – the desired device of returned tensor.
Default: if <code class="docutils literal"><span class="pre">None</span></code>, defaults to the device of <code class="xref py py-attr docutils literal"><span class="pre">input</span></code>.</li>
<li><strong>requires_grad</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.7)"><em>bool</em></a><em>, </em><em>optional</em>) – If autograd should record operations on the
returned tensor. Default: <code class="docutils literal"><span class="pre">False</span></code>.</li>
</ul>
</td>
</tr>
</tbody>
</table>
<p>Example:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="nb">input</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">empty</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">torch</span><span class="o">.</span><span class="n">ones_like</span><span class="p">(</span><span class="nb">input</span><span class="p">)</span>
<span class="go">tensor([[ 1., 1., 1.],</span>
<span class="go"> [ 1., 1., 1.]])</span>
</pre></div>
</div>
</dd></dl>
<dl class="function">
<dt id="torch.arange">
<code class="descclassname">torch.</code><code class="descname">arange</code><span class="sig-paren">(</span><em>start=0</em>, <em>end</em>, <em>step=1</em>, <em>out=None</em>, <em>dtype=None</em>, <em>layout=torch.strided</em>, <em>device=None</em>, <em>requires_grad=False</em><span class="sig-paren">)</span> → Tensor<a class="headerlink" href="#torch.arange" title="Permalink to this definition">¶</a></dt>
<dd><p>Returns a 1-D tensor of size <span class="math">\(\left\lfloor \frac{\text{end} - \text{start}}{\text{step}} \right\rfloor\)</span>
with values from the interval <code class="docutils literal"><span class="pre">[start,</span> <span class="pre">end)</span></code> taken with common difference
<code class="xref py py-attr docutils literal"><span class="pre">step</span></code> beginning from <cite>start</cite>.</p>
<p>Note that non-integer <code class="xref py py-attr docutils literal"><span class="pre">step</span></code> is subject to floating point rounding errors when
comparing against <code class="xref py py-attr docutils literal"><span class="pre">end</span></code>; to avoid inconsistency, we advise adding a small epsilon to <code class="xref py py-attr docutils literal"><span class="pre">end</span></code>
in such cases.</p>
<div class="math">
\[\text{out}_{{i+1}} = \text{out}_{i} + \text{step}
\]</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>start</strong> (<em>Number</em>) – the starting value for the set of points. Default: <code class="docutils literal"><span class="pre">0</span></code>.</li>
<li><strong>end</strong> (<em>Number</em>) – the ending value for the set of points</li>
<li><strong>step</strong> (<em>Number</em>) – the gap between each pair of adjacent points. Default: <code class="docutils literal"><span class="pre">1</span></code>.</li>
<li><strong>out</strong> (<a class="reference internal" href="tensors.html#torch.Tensor" title="torch.Tensor"><em>Tensor</em></a><em>, </em><em>optional</em>) – the output tensor</li>
<li><strong>dtype</strong> (<a class="reference internal" href="tensor_attributes.html#torch.torch.dtype" title="torch.torch.dtype"><code class="xref py py-class docutils literal"><span class="pre">torch.dtype</span></code></a>, optional) – the desired data type of returned tensor.
Default: if <code class="docutils literal"><span class="pre">None</span></code>, uses a global default (see <a class="reference internal" href="#torch.set_default_tensor_type" title="torch.set_default_tensor_type"><code class="xref py py-func docutils literal"><span class="pre">torch.set_default_tensor_type()</span></code></a>). If <cite>dtype</cite> is not given, infer the data type from the other input
arguments. If any of <cite>start</cite>, <cite>end</cite>, or <cite>stop</cite> are floating-point, the
<cite>dtype</cite> is inferred to be the default dtype, see
<a class="reference internal" href="#torch.get_default_dtype" title="torch.get_default_dtype"><code class="xref py py-meth docutils literal"><span class="pre">get_default_dtype()</span></code></a>. Otherwise, the <cite>dtype</cite> is inferred to
be <cite>torch.int64</cite>.</li>
<li><strong>layout</strong> (<a class="reference internal" href="tensor_attributes.html#torch.torch.layout" title="torch.torch.layout"><code class="xref py py-class docutils literal"><span class="pre">torch.layout</span></code></a>, optional) – the desired layout of returned Tensor.
Default: <code class="docutils literal"><span class="pre">torch.strided</span></code>.</li>
<li><strong>device</strong> (<a class="reference internal" href="tensor_attributes.html#torch.torch.device" title="torch.torch.device"><code class="xref py py-class docutils literal"><span class="pre">torch.device</span></code></a>, optional) – the desired device of returned tensor.
Default: if <code class="docutils literal"><span class="pre">None</span></code>, uses the current device for the default tensor type
(see <a class="reference internal" href="#torch.set_default_tensor_type" title="torch.set_default_tensor_type"><code class="xref py py-func docutils literal"><span class="pre">torch.set_default_tensor_type()</span></code></a>). <code class="xref py py-attr docutils literal"><span class="pre">device</span></code> will be the CPU
for CPU tensor types and the current CUDA device for CUDA tensor types.</li>
<li><strong>requires_grad</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.7)"><em>bool</em></a><em>, </em><em>optional</em>) – If autograd should record operations on the
returned tensor. Default: <code class="docutils literal"><span class="pre">False</span></code>.</li>
</ul>
</td>
</tr>
</tbody>
</table>
<p>Example:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">torch</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">5</span><span class="p">)</span>
<span class="go">tensor([ 0, 1, 2, 3, 4])</span>
<span class="gp">>>> </span><span class="n">torch</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">4</span><span class="p">)</span>
<span class="go">tensor([ 1, 2, 3])</span>
<span class="gp">>>> </span><span class="n">torch</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mf">2.5</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">)</span>
<span class="go">tensor([ 1.0000, 1.5000, 2.0000])</span>
</pre></div>
</div>
</dd></dl>
<dl class="function">
<dt id="torch.range">
<code class="descclassname">torch.</code><code class="descname">range</code><span class="sig-paren">(</span><em>start=0</em>, <em>end</em>, <em>step=1</em>, <em>out=None</em>, <em>dtype=None</em>, <em>layout=torch.strided</em>, <em>device=None</em>, <em>requires_grad=False</em><span class="sig-paren">)</span> → Tensor<a class="headerlink" href="#torch.range" title="Permalink to this definition">¶</a></dt>
<dd><p>Returns a 1-D tensor of size <span class="math">\(\left\lfloor \frac{\text{end} - \text{start}}{\text{step}} \right\rfloor + 1\)</span>
with values from <code class="xref py py-attr docutils literal"><span class="pre">start</span></code> to <code class="xref py py-attr docutils literal"><span class="pre">end</span></code> with step <code class="xref py py-attr docutils literal"><span class="pre">step</span></code>. Step is
the gap between two values in the tensor.</p>
<div class="math">
\[\text{out}_{i+1} = \text{out}_i + \text{step}.
\]</div>
<div class="admonition warning">
<p class="first admonition-title">Warning</p>
<p class="last">This function is deprecated in favor of <a class="reference internal" href="#torch.arange" title="torch.arange"><code class="xref py py-func docutils literal"><span class="pre">torch.arange()</span></code></a>.</p>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>start</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#float" title="(in Python v3.7)"><em>float</em></a>) – the starting value for the set of points. Default: <code class="docutils literal"><span class="pre">0</span></code>.</li>
<li><strong>end</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#float" title="(in Python v3.7)"><em>float</em></a>) – the ending value for the set of points</li>
<li><strong>step</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#float" title="(in Python v3.7)"><em>float</em></a>) – the gap between each pair of adjacent points. Default: <code class="docutils literal"><span class="pre">1</span></code>.</li>
<li><strong>out</strong> (<a class="reference internal" href="tensors.html#torch.Tensor" title="torch.Tensor"><em>Tensor</em></a><em>, </em><em>optional</em>) – the output tensor</li>
<li><strong>dtype</strong> (<a class="reference internal" href="tensor_attributes.html#torch.torch.dtype" title="torch.torch.dtype"><code class="xref py py-class docutils literal"><span class="pre">torch.dtype</span></code></a>, optional) – the desired data type of returned tensor.
Default: if <code class="docutils literal"><span class="pre">None</span></code>, uses a global default (see <a class="reference internal" href="#torch.set_default_tensor_type" title="torch.set_default_tensor_type"><code class="xref py py-func docutils literal"><span class="pre">torch.set_default_tensor_type()</span></code></a>).</li>
<li><strong>layout</strong> (<a class="reference internal" href="tensor_attributes.html#torch.torch.layout" title="torch.torch.layout"><code class="xref py py-class docutils literal"><span class="pre">torch.layout</span></code></a>, optional) – the desired layout of returned Tensor.
Default: <code class="docutils literal"><span class="pre">torch.strided</span></code>.</li>
<li><strong>device</strong> (<a class="reference internal" href="tensor_attributes.html#torch.torch.device" title="torch.torch.device"><code class="xref py py-class docutils literal"><span class="pre">torch.device</span></code></a>, optional) – the desired device of returned tensor.
Default: if <code class="docutils literal"><span class="pre">None</span></code>, uses the current device for the default tensor type
(see <a class="reference internal" href="#torch.set_default_tensor_type" title="torch.set_default_tensor_type"><code class="xref py py-func docutils literal"><span class="pre">torch.set_default_tensor_type()</span></code></a>). <code class="xref py py-attr docutils literal"><span class="pre">device</span></code> will be the CPU
for CPU tensor types and the current CUDA device for CUDA tensor types.</li>
<li><strong>requires_grad</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.7)"><em>bool</em></a><em>, </em><em>optional</em>) – If autograd should record operations on the
returned tensor. Default: <code class="docutils literal"><span class="pre">False</span></code>.</li>
</ul>
</td>
</tr>
</tbody>
</table>
<p>Example:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">torch</span><span class="o">.</span><span class="n">range</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">4</span><span class="p">)</span>
<span class="go">tensor([ 1., 2., 3., 4.])</span>
<span class="gp">>>> </span><span class="n">torch</span><span class="o">.</span><span class="n">range</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">)</span>
<span class="go">tensor([ 1.0000, 1.5000, 2.0000, 2.5000, 3.0000, 3.5000, 4.0000])</span>
</pre></div>
</div>
</dd></dl>
<dl class="function">
<dt id="torch.linspace">
<code class="descclassname">torch.</code><code class="descname">linspace</code><span class="sig-paren">(</span><em>start</em>, <em>end</em>, <em>steps=100</em>, <em>out=None</em>, <em>dtype=None</em>, <em>layout=torch.strided</em>, <em>device=None</em>, <em>requires_grad=False</em><span class="sig-paren">)</span> → Tensor<a class="headerlink" href="#torch.linspace" title="Permalink to this definition">¶</a></dt>
<dd><p>Returns a one-dimensional tensor of <code class="xref py py-attr docutils literal"><span class="pre">steps</span></code>
equally spaced points between <code class="xref py py-attr docutils literal"><span class="pre">start</span></code> and <code class="xref py py-attr docutils literal"><span class="pre">end</span></code>.</p>
<p>The output tensor is 1-D of size <code class="xref py py-attr docutils literal"><span class="pre">steps</span></code>.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>start</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#float" title="(in Python v3.7)"><em>float</em></a>) – the starting value for the set of points</li>
<li><strong>end</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#float" title="(in Python v3.7)"><em>float</em></a>) – the ending value for the set of points</li>
<li><strong>steps</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.7)"><em>int</em></a>) – number of points to sample between <code class="xref py py-attr docutils literal"><span class="pre">start</span></code>
and <code class="xref py py-attr docutils literal"><span class="pre">end</span></code>. Default: <code class="docutils literal"><span class="pre">100</span></code>.</li>
<li><strong>out</strong> (<a class="reference internal" href="tensors.html#torch.Tensor" title="torch.Tensor"><em>Tensor</em></a><em>, </em><em>optional</em>) – the output tensor</li>
<li><strong>dtype</strong> (<a class="reference internal" href="tensor_attributes.html#torch.torch.dtype" title="torch.torch.dtype"><code class="xref py py-class docutils literal"><span class="pre">torch.dtype</span></code></a>, optional) – the desired data type of returned tensor.
Default: if <code class="docutils literal"><span class="pre">None</span></code>, uses a global default (see <a class="reference internal" href="#torch.set_default_tensor_type" title="torch.set_default_tensor_type"><code class="xref py py-func docutils literal"><span class="pre">torch.set_default_tensor_type()</span></code></a>).</li>
<li><strong>layout</strong> (<a class="reference internal" href="tensor_attributes.html#torch.torch.layout" title="torch.torch.layout"><code class="xref py py-class docutils literal"><span class="pre">torch.layout</span></code></a>, optional) – the desired layout of returned Tensor.
Default: <code class="docutils literal"><span class="pre">torch.strided</span></code>.</li>
<li><strong>device</strong> (<a class="reference internal" href="tensor_attributes.html#torch.torch.device" title="torch.torch.device"><code class="xref py py-class docutils literal"><span class="pre">torch.device</span></code></a>, optional) – the desired device of returned tensor.
Default: if <code class="docutils literal"><span class="pre">None</span></code>, uses the current device for the default tensor type
(see <a class="reference internal" href="#torch.set_default_tensor_type" title="torch.set_default_tensor_type"><code class="xref py py-func docutils literal"><span class="pre">torch.set_default_tensor_type()</span></code></a>). <code class="xref py py-attr docutils literal"><span class="pre">device</span></code> will be the CPU
for CPU tensor types and the current CUDA device for CUDA tensor types.</li>
<li><strong>requires_grad</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.7)"><em>bool</em></a><em>, </em><em>optional</em>) – If autograd should record operations on the
returned tensor. Default: <code class="docutils literal"><span class="pre">False</span></code>.</li>
</ul>
</td>
</tr>
</tbody>
</table>
<p>Example:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">torch</span><span class="o">.</span><span class="n">linspace</span><span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="mi">10</span><span class="p">,</span> <span class="n">steps</span><span class="o">=</span><span class="mi">5</span><span class="p">)</span>
<span class="go">tensor([ 3.0000, 4.7500, 6.5000, 8.2500, 10.0000])</span>
<span class="gp">>>> </span><span class="n">torch</span><span class="o">.</span><span class="n">linspace</span><span class="p">(</span><span class="o">-</span><span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">,</span> <span class="n">steps</span><span class="o">=</span><span class="mi">5</span><span class="p">)</span>
<span class="go">tensor([-10., -5., 0., 5., 10.])</span>
<span class="gp">>>> </span><span class="n">torch</span><span class="o">.</span><span class="n">linspace</span><span class="p">(</span><span class="n">start</span><span class="o">=-</span><span class="mi">10</span><span class="p">,</span> <span class="n">end</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">steps</span><span class="o">=</span><span class="mi">5</span><span class="p">)</span>
<span class="go">tensor([-10., -5., 0., 5., 10.])</span>
</pre></div>
</div>
</dd></dl>
<dl class="function">
<dt id="torch.logspace">
<code class="descclassname">torch.</code><code class="descname">logspace</code><span class="sig-paren">(</span><em>start</em>, <em>end</em>, <em>steps=100</em>, <em>out=None</em>, <em>dtype=None</em>, <em>layout=torch.strided</em>, <em>device=None</em>, <em>requires_grad=False</em><span class="sig-paren">)</span> → Tensor<a class="headerlink" href="#torch.logspace" title="Permalink to this definition">¶</a></dt>
<dd><p>Returns a one-dimensional tensor of <code class="xref py py-attr docutils literal"><span class="pre">steps</span></code> points
logarithmically spaced between <span class="math">\(10^{\text{start}}\)</span> and <span class="math">\(10^{\text{end}}\)</span>.</p>
<p>The output tensor is 1-D of size <code class="xref py py-attr docutils literal"><span class="pre">steps</span></code>.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>start</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#float" title="(in Python v3.7)"><em>float</em></a>) – the starting value for the set of points</li>
<li><strong>end</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#float" title="(in Python v3.7)"><em>float</em></a>) – the ending value for the set of points</li>
<li><strong>steps</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.7)"><em>int</em></a>) – number of points to sample between <code class="xref py py-attr docutils literal"><span class="pre">start</span></code>
and <code class="xref py py-attr docutils literal"><span class="pre">end</span></code>. Default: <code class="docutils literal"><span class="pre">100</span></code>.</li>
<li><strong>out</strong> (<a class="reference internal" href="tensors.html#torch.Tensor" title="torch.Tensor"><em>Tensor</em></a><em>, </em><em>optional</em>) – the output tensor</li>
<li><strong>dtype</strong> (<a class="reference internal" href="tensor_attributes.html#torch.torch.dtype" title="torch.torch.dtype"><code class="xref py py-class docutils literal"><span class="pre">torch.dtype</span></code></a>, optional) – the desired data type of returned tensor.
Default: if <code class="docutils literal"><span class="pre">None</span></code>, uses a global default (see <a class="reference internal" href="#torch.set_default_tensor_type" title="torch.set_default_tensor_type"><code class="xref py py-func docutils literal"><span class="pre">torch.set_default_tensor_type()</span></code></a>).</li>
<li><strong>layout</strong> (<a class="reference internal" href="tensor_attributes.html#torch.torch.layout" title="torch.torch.layout"><code class="xref py py-class docutils literal"><span class="pre">torch.layout</span></code></a>, optional) – the desired layout of returned Tensor.
Default: <code class="docutils literal"><span class="pre">torch.strided</span></code>.</li>
<li><strong>device</strong> (<a class="reference internal" href="tensor_attributes.html#torch.torch.device" title="torch.torch.device"><code class="xref py py-class docutils literal"><span class="pre">torch.device</span></code></a>, optional) – the desired device of returned tensor.
Default: if <code class="docutils literal"><span class="pre">None</span></code>, uses the current device for the default tensor type
(see <a class="reference internal" href="#torch.set_default_tensor_type" title="torch.set_default_tensor_type"><code class="xref py py-func docutils literal"><span class="pre">torch.set_default_tensor_type()</span></code></a>). <code class="xref py py-attr docutils literal"><span class="pre">device</span></code> will be the CPU
for CPU tensor types and the current CUDA device for CUDA tensor types.</li>
<li><strong>requires_grad</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.7)"><em>bool</em></a><em>, </em><em>optional</em>) – If autograd should record operations on the
returned tensor. Default: <code class="docutils literal"><span class="pre">False</span></code>.</li>
</ul>
</td>
</tr>
</tbody>
</table>