forked from pytorch/pytorch.github.io
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathddp.html
918 lines (731 loc) · 52.1 KB
/
ddp.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta name="robots" content="noindex">
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Distributed Data Parallel — PyTorch 1.12 documentation</title>
<link rel="canonical" href="https://pytorch.org/docs/stable/notes/ddp.html"/>
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<!-- <link rel="stylesheet" href="../_static/pygments.css" type="text/css" /> -->
<link rel="stylesheet" href="../_static/copybutton.css" type="text/css" />
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.css" type="text/css" />
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.css" type="text/css" />
<link rel="stylesheet" href="../_static/katex-math.css" type="text/css" />
<link rel="stylesheet" href="../_static/panels-main.c949a650a448cc0ae9fd3441c0e17fb0.css" type="text/css" />
<link rel="stylesheet" href="../_static/panels-variables.06eb56fa6e07937060861dad626602ad.css" type="text/css" />
<link rel="stylesheet" href="../_static/css/jit.css" type="text/css" />
<link rel="index" title="Index" href="../genindex.html" />
<link rel="search" title="Search" href="../search.html" />
<link rel="next" title="Extending PyTorch" href="extending.html" />
<link rel="prev" title="CUDA semantics" href="cuda.html" />
<!-- Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=UA-117752657-2"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-117752657-2');
</script>
<!-- End Google Analytics -->
<script src="../_static/js/modernizr.min.js"></script>
<!-- Preload the theme fonts -->
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-book.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-medium.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/IBMPlexMono/IBMPlexMono-Medium.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-bold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-medium-italic.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/IBMPlexMono/IBMPlexMono-SemiBold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<!-- Preload the katex fonts -->
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Math-Italic.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Main-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Main-Bold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Size1-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Size4-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Size2-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Size3-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Caligraphic-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.15.2/css/all.css" integrity="sha384-vSIIfh2YWi9wW0r9iZe7RJPrKwp6bG+s9QZMoITbCckVJqGCCRhc+ccxNcdpHuYu" crossorigin="anonymous">
</head>
<div class="container-fluid header-holder tutorials-header" id="header-holder">
<div class="container">
<div class="header-container">
<a class="header-logo" href="https://pytorch.org/" aria-label="PyTorch"></a>
<div class="main-menu">
<ul>
<li>
<a href="https://pytorch.org/get-started">Get Started</a>
</li>
<li>
<a href="https://pytorch.org/ecosystem">Ecosystem</a>
</li>
<li>
<a href="https://pytorch.org/mobile">Mobile</a>
</li>
<li>
<a href="https://pytorch.org/blog/">Blog</a>
</li>
<li>
<a href="https://pytorch.org/tutorials">Tutorials</a>
</li>
<li class="active docs-active">
<div id="resourcesDropdownButton" data-toggle="resources-dropdown" class="resources-dropdown">
<a class="resource-option with-down-orange-arrow">
Docs
</a>
<div class="resources-dropdown-menu">
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/docs/stable/index.html">
<span class="dropdown-title">PyTorch</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/audio/stable/index.html">
<span class="dropdown-title">torchaudio</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/text/stable/index.html">
<span class="dropdown-title">torchtext</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/vision/stable/index.html">
<span class="dropdown-title">torchvision</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/torchrec">
<span class="dropdown-title">TorchRec</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/data">
<span class="dropdown-title">TorchData</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/serve/">
<span class="dropdown-title">TorchServe</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/torchx/">
<span class="dropdown-title">TorchX</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/xla">
<span class="dropdown-title">PyTorch on XLA Devices</span>
<p></p>
</a>
</div>
</li>
<li>
<div id="resourcesDropdownButton" data-toggle="resources-dropdown" class="resources-dropdown">
<a class="resource-option with-down-arrow">
Resources
</a>
<div class="resources-dropdown-menu">
<a class="nav-dropdown-item" href="https://pytorch.org/features">
<span class="dropdown-title">About</span>
<p>Learn about PyTorch’s features and capabilities</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/#community-module">
<span class="dropdown-title">Community</span>
<p>Join the PyTorch developer community to contribute, learn, and get your questions answered.</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/resources">
<span class="dropdown-title">Developer Resources</span>
<p>Find resources and get questions answered</p>
</a>
<a class="nav-dropdown-item" href="https://discuss.pytorch.org/" target="_blank">
<span class="dropdown-title">Forums</span>
<p>A place to discuss PyTorch code, issues, install, research</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/hub">
<span class="dropdown-title">Models (Beta)</span>
<p>Discover, publish, and reuse pre-trained models</p>
</a>
</div>
</div>
</li>
<li>
<a href="https://github.com/pytorch/pytorch">GitHub</a>
</li>
</ul>
</div>
<a class="main-menu-open-button" href="#" data-behavior="open-mobile-menu"></a>
</div>
</div>
</div>
<body class="pytorch-body">
<div class="table-of-contents-link-wrapper">
<span>Table of Contents</span>
<a href="#" class="toggle-table-of-contents" data-behavior="toggle-table-of-contents"></a>
</div>
<nav data-toggle="wy-nav-shift" class="pytorch-left-menu" id="pytorch-left-menu">
<div class="pytorch-side-scroll">
<div class="pytorch-menu pytorch-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<div class="pytorch-left-menu-search">
<div class="version">
<a href='https://pytorch.org/docs/versions.html'>1.12 ▼</a>
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../search.html" method="get">
<input type="text" name="q" placeholder="Search Docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<p class="caption" role="heading"><span class="caption-text">Community</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../community/build_ci_governance.html">PyTorch Governance | Build + CI</a></li>
<li class="toctree-l1"><a class="reference internal" href="../community/contribution_guide.html">PyTorch Contribution Guide</a></li>
<li class="toctree-l1"><a class="reference internal" href="../community/design.html">PyTorch Design Philosophy</a></li>
<li class="toctree-l1"><a class="reference internal" href="../community/governance.html">PyTorch Governance | Mechanics</a></li>
<li class="toctree-l1"><a class="reference internal" href="../community/persons_of_interest.html">PyTorch Governance | Maintainers</a></li>
</ul>
<p class="caption"><span class="caption-text">Notes</span></p>
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="amp_examples.html">CUDA Automatic Mixed Precision examples</a></li>
<li class="toctree-l1"><a class="reference internal" href="autograd.html">Autograd mechanics</a></li>
<li class="toctree-l1"><a class="reference internal" href="broadcasting.html">Broadcasting semantics</a></li>
<li class="toctree-l1"><a class="reference internal" href="cpu_threading_torchscript_inference.html">CPU threading and TorchScript inference</a></li>
<li class="toctree-l1"><a class="reference internal" href="cuda.html">CUDA semantics</a></li>
<li class="toctree-l1 current"><a class="current reference internal" href="#">Distributed Data Parallel</a></li>
<li class="toctree-l1"><a class="reference internal" href="extending.html">Extending PyTorch</a></li>
<li class="toctree-l1"><a class="reference internal" href="faq.html">Frequently Asked Questions</a></li>
<li class="toctree-l1"><a class="reference internal" href="gradcheck.html">Gradcheck mechanics</a></li>
<li class="toctree-l1"><a class="reference internal" href="hip.html">HIP (ROCm) semantics</a></li>
<li class="toctree-l1"><a class="reference internal" href="large_scale_deployments.html">Features for large-scale deployments</a></li>
<li class="toctree-l1"><a class="reference internal" href="modules.html">Modules</a></li>
<li class="toctree-l1"><a class="reference internal" href="mps.html">MPS backend</a></li>
<li class="toctree-l1"><a class="reference internal" href="multiprocessing.html">Multiprocessing best practices</a></li>
<li class="toctree-l1"><a class="reference internal" href="numerical_accuracy.html">Numerical accuracy</a></li>
<li class="toctree-l1"><a class="reference internal" href="randomness.html">Reproducibility</a></li>
<li class="toctree-l1"><a class="reference internal" href="serialization.html">Serialization semantics</a></li>
<li class="toctree-l1"><a class="reference internal" href="windows.html">Windows FAQ</a></li>
</ul>
<p class="caption"><span class="caption-text">Language Bindings</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../cpp_index.html">C++</a></li>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/javadoc/">Javadoc</a></li>
<li class="toctree-l1"><a class="reference internal" href="../deploy.html">torch::deploy</a></li>
</ul>
<p class="caption"><span class="caption-text">Python API</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../torch.html">torch</a></li>
<li class="toctree-l1"><a class="reference internal" href="../nn.html">torch.nn</a></li>
<li class="toctree-l1"><a class="reference internal" href="../nn.functional.html">torch.nn.functional</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tensors.html">torch.Tensor</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tensor_attributes.html">Tensor Attributes</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tensor_view.html">Tensor Views</a></li>
<li class="toctree-l1"><a class="reference internal" href="../amp.html">torch.amp</a></li>
<li class="toctree-l1"><a class="reference internal" href="../autograd.html">torch.autograd</a></li>
<li class="toctree-l1"><a class="reference internal" href="../library.html">torch.library</a></li>
<li class="toctree-l1"><a class="reference internal" href="../cuda.html">torch.cuda</a></li>
<li class="toctree-l1"><a class="reference internal" href="../backends.html">torch.backends</a></li>
<li class="toctree-l1"><a class="reference internal" href="../distributed.html">torch.distributed</a></li>
<li class="toctree-l1"><a class="reference internal" href="../distributed.algorithms.join.html">torch.distributed.algorithms.join</a></li>
<li class="toctree-l1"><a class="reference internal" href="../distributed.elastic.html">torch.distributed.elastic</a></li>
<li class="toctree-l1"><a class="reference internal" href="../fsdp.html">torch.distributed.fsdp</a></li>
<li class="toctree-l1"><a class="reference internal" href="../distributed.optim.html">torch.distributed.optim</a></li>
<li class="toctree-l1"><a class="reference internal" href="../distributions.html">torch.distributions</a></li>
<li class="toctree-l1"><a class="reference internal" href="../fft.html">torch.fft</a></li>
<li class="toctree-l1"><a class="reference internal" href="../futures.html">torch.futures</a></li>
<li class="toctree-l1"><a class="reference internal" href="../fx.html">torch.fx</a></li>
<li class="toctree-l1"><a class="reference internal" href="../hub.html">torch.hub</a></li>
<li class="toctree-l1"><a class="reference internal" href="../jit.html">torch.jit</a></li>
<li class="toctree-l1"><a class="reference internal" href="../linalg.html">torch.linalg</a></li>
<li class="toctree-l1"><a class="reference internal" href="../monitor.html">torch.monitor</a></li>
<li class="toctree-l1"><a class="reference internal" href="../special.html">torch.special</a></li>
<li class="toctree-l1"><a class="reference internal" href="../torch.overrides.html">torch.overrides</a></li>
<li class="toctree-l1"><a class="reference internal" href="../package.html">torch.package</a></li>
<li class="toctree-l1"><a class="reference internal" href="../profiler.html">torch.profiler</a></li>
<li class="toctree-l1"><a class="reference internal" href="../nn.init.html">torch.nn.init</a></li>
<li class="toctree-l1"><a class="reference internal" href="../onnx.html">torch.onnx</a></li>
<li class="toctree-l1"><a class="reference internal" href="../optim.html">torch.optim</a></li>
<li class="toctree-l1"><a class="reference internal" href="../complex_numbers.html">Complex Numbers</a></li>
<li class="toctree-l1"><a class="reference internal" href="../ddp_comm_hooks.html">DDP Communication Hooks</a></li>
<li class="toctree-l1"><a class="reference internal" href="../pipeline.html">Pipeline Parallelism</a></li>
<li class="toctree-l1"><a class="reference internal" href="../quantization.html">Quantization</a></li>
<li class="toctree-l1"><a class="reference internal" href="../rpc.html">Distributed RPC Framework</a></li>
<li class="toctree-l1"><a class="reference internal" href="../random.html">torch.random</a></li>
<li class="toctree-l1"><a class="reference internal" href="../nested.html">torch.nested</a></li>
<li class="toctree-l1"><a class="reference internal" href="../sparse.html">torch.sparse</a></li>
<li class="toctree-l1"><a class="reference internal" href="../storage.html">torch.Storage</a></li>
<li class="toctree-l1"><a class="reference internal" href="../testing.html">torch.testing</a></li>
<li class="toctree-l1"><a class="reference internal" href="../benchmark_utils.html">torch.utils.benchmark</a></li>
<li class="toctree-l1"><a class="reference internal" href="../bottleneck.html">torch.utils.bottleneck</a></li>
<li class="toctree-l1"><a class="reference internal" href="../checkpoint.html">torch.utils.checkpoint</a></li>
<li class="toctree-l1"><a class="reference internal" href="../cpp_extension.html">torch.utils.cpp_extension</a></li>
<li class="toctree-l1"><a class="reference internal" href="../data.html">torch.utils.data</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dlpack.html">torch.utils.dlpack</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mobile_optimizer.html">torch.utils.mobile_optimizer</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model_zoo.html">torch.utils.model_zoo</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tensorboard.html">torch.utils.tensorboard</a></li>
<li class="toctree-l1"><a class="reference internal" href="../type_info.html">Type Info</a></li>
<li class="toctree-l1"><a class="reference internal" href="../named_tensor.html">Named Tensors</a></li>
<li class="toctree-l1"><a class="reference internal" href="../name_inference.html">Named Tensors operator coverage</a></li>
<li class="toctree-l1"><a class="reference internal" href="../config_mod.html">torch.__config__</a></li>
</ul>
<p class="caption"><span class="caption-text">Libraries</span></p>
<ul>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/audio/stable">torchaudio</a></li>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/data">TorchData</a></li>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/torchrec">TorchRec</a></li>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/serve">TorchServe</a></li>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/text/stable">torchtext</a></li>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/vision/stable">torchvision</a></li>
<li class="toctree-l1"><a class="reference external" href="http://pytorch.org/xla/">PyTorch on XLA Devices</a></li>
</ul>
</div>
</div>
</nav>
<div class="pytorch-container">
<div class="pytorch-page-level-bar" id="pytorch-page-level-bar">
<div class="pytorch-breadcrumbs-wrapper">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="pytorch-breadcrumbs">
<li>
<a href="../index.html">
Docs
</a> >
</li>
<li>Distributed Data Parallel</li>
<li class="pytorch-breadcrumbs-aside">
<a href="../_sources/notes/ddp.rst.txt" rel="nofollow"><img src="../_static/images/view-page-source-icon.svg"></a>
</li>
</ul>
</div>
</div>
<div class="pytorch-shortcuts-wrapper" id="pytorch-shortcuts-wrapper">
Shortcuts
</div>
</div>
<section data-toggle="wy-nav-shift" id="pytorch-content-wrap" class="pytorch-content-wrap">
<div class="pytorch-content-left">
<div class="rst-content">
<div role="main" class="main-content" itemscope="itemscope" itemtype="http://schema.org/Article">
<article itemprop="articleBody" id="pytorch-article" class="pytorch-article">
<div class="section" id="distributed-data-parallel">
<span id="ddp"></span><h1>Distributed Data Parallel<a class="headerlink" href="#distributed-data-parallel" title="Permalink to this headline">¶</a></h1>
<div class="admonition warning">
<p class="admonition-title">Warning</p>
<p>The implementation of <a class="reference internal" href="../generated/torch.nn.parallel.DistributedDataParallel.html#torch.nn.parallel.DistributedDataParallel" title="torch.nn.parallel.DistributedDataParallel"><code class="xref py py-class docutils literal notranslate"><span class="pre">torch.nn.parallel.DistributedDataParallel</span></code></a>
evolves over time. This design note is written based on the state as of v1.4.</p>
</div>
<p><a class="reference internal" href="../generated/torch.nn.parallel.DistributedDataParallel.html#torch.nn.parallel.DistributedDataParallel" title="torch.nn.parallel.DistributedDataParallel"><code class="xref py py-class docutils literal notranslate"><span class="pre">torch.nn.parallel.DistributedDataParallel</span></code></a> (DDP) transparently performs
distributed data parallel training. This page describes how it works and reveals
implementation details.</p>
<div class="section" id="example">
<h2>Example<a class="headerlink" href="#example" title="Permalink to this headline">¶</a></h2>
<p>Let us start with a simple <a class="reference internal" href="../generated/torch.nn.parallel.DistributedDataParallel.html#torch.nn.parallel.DistributedDataParallel" title="torch.nn.parallel.DistributedDataParallel"><code class="xref py py-class docutils literal notranslate"><span class="pre">torch.nn.parallel.DistributedDataParallel</span></code></a>
example. This example uses a <a class="reference internal" href="../generated/torch.nn.Linear.html#torch.nn.Linear" title="torch.nn.Linear"><code class="xref py py-class docutils literal notranslate"><span class="pre">torch.nn.Linear</span></code></a> as the local model, wraps
it with DDP, and then runs one forward pass, one backward pass, and an optimizer
step on the DDP model. After that, parameters on the local model will be
updated, and all models on different processes should be exactly the same.</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">torch</span>
<span class="kn">import</span> <span class="nn">torch.distributed</span> <span class="k">as</span> <span class="nn">dist</span>
<span class="kn">import</span> <span class="nn">torch.multiprocessing</span> <span class="k">as</span> <span class="nn">mp</span>
<span class="kn">import</span> <span class="nn">torch.nn</span> <span class="k">as</span> <span class="nn">nn</span>
<span class="kn">import</span> <span class="nn">torch.optim</span> <span class="k">as</span> <span class="nn">optim</span>
<span class="kn">from</span> <span class="nn">torch.nn.parallel</span> <span class="kn">import</span> <span class="n">DistributedDataParallel</span> <span class="k">as</span> <span class="n">DDP</span>
<span class="k">def</span> <span class="nf">example</span><span class="p">(</span><span class="n">rank</span><span class="p">,</span> <span class="n">world_size</span><span class="p">):</span>
<span class="c1"># create default process group</span>
<span class="n">dist</span><span class="o">.</span><span class="n">init_process_group</span><span class="p">(</span><span class="s2">"gloo"</span><span class="p">,</span> <span class="n">rank</span><span class="o">=</span><span class="n">rank</span><span class="p">,</span> <span class="n">world_size</span><span class="o">=</span><span class="n">world_size</span><span class="p">)</span>
<span class="c1"># create local model</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">)</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">rank</span><span class="p">)</span>
<span class="c1"># construct DDP model</span>
<span class="n">ddp_model</span> <span class="o">=</span> <span class="n">DDP</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">device_ids</span><span class="o">=</span><span class="p">[</span><span class="n">rank</span><span class="p">])</span>
<span class="c1"># define loss function and optimizer</span>
<span class="n">loss_fn</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">MSELoss</span><span class="p">()</span>
<span class="n">optimizer</span> <span class="o">=</span> <span class="n">optim</span><span class="o">.</span><span class="n">SGD</span><span class="p">(</span><span class="n">ddp_model</span><span class="o">.</span><span class="n">parameters</span><span class="p">(),</span> <span class="n">lr</span><span class="o">=</span><span class="mf">0.001</span><span class="p">)</span>
<span class="c1"># forward pass</span>
<span class="n">outputs</span> <span class="o">=</span> <span class="n">ddp_model</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">randn</span><span class="p">(</span><span class="mi">20</span><span class="p">,</span> <span class="mi">10</span><span class="p">)</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">rank</span><span class="p">))</span>
<span class="n">labels</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">randn</span><span class="p">(</span><span class="mi">20</span><span class="p">,</span> <span class="mi">10</span><span class="p">)</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">rank</span><span class="p">)</span>
<span class="c1"># backward pass</span>
<span class="n">loss_fn</span><span class="p">(</span><span class="n">outputs</span><span class="p">,</span> <span class="n">labels</span><span class="p">)</span><span class="o">.</span><span class="n">backward</span><span class="p">()</span>
<span class="c1"># update parameters</span>
<span class="n">optimizer</span><span class="o">.</span><span class="n">step</span><span class="p">()</span>
<span class="k">def</span> <span class="nf">main</span><span class="p">():</span>
<span class="n">world_size</span> <span class="o">=</span> <span class="mi">2</span>
<span class="n">mp</span><span class="o">.</span><span class="n">spawn</span><span class="p">(</span><span class="n">example</span><span class="p">,</span>
<span class="n">args</span><span class="o">=</span><span class="p">(</span><span class="n">world_size</span><span class="p">,),</span>
<span class="n">nprocs</span><span class="o">=</span><span class="n">world_size</span><span class="p">,</span>
<span class="n">join</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="k">if</span> <span class="vm">__name__</span><span class="o">==</span><span class="s2">"__main__"</span><span class="p">:</span>
<span class="c1"># Environment variables which need to be</span>
<span class="c1"># set when using c10d's default "env"</span>
<span class="c1"># initialization mode.</span>
<span class="n">os</span><span class="o">.</span><span class="n">environ</span><span class="p">[</span><span class="s2">"MASTER_ADDR"</span><span class="p">]</span> <span class="o">=</span> <span class="s2">"localhost"</span>
<span class="n">os</span><span class="o">.</span><span class="n">environ</span><span class="p">[</span><span class="s2">"MASTER_PORT"</span><span class="p">]</span> <span class="o">=</span> <span class="s2">"29500"</span>
<span class="n">main</span><span class="p">()</span>
</pre></div>
</div>
</div>
<div class="section" id="internal-design">
<h2>Internal Design<a class="headerlink" href="#internal-design" title="Permalink to this headline">¶</a></h2>
<p>This section reveals how it works under the hood of
<a class="reference internal" href="../generated/torch.nn.parallel.DistributedDataParallel.html#torch.nn.parallel.DistributedDataParallel" title="torch.nn.parallel.DistributedDataParallel"><code class="xref py py-class docutils literal notranslate"><span class="pre">torch.nn.parallel.DistributedDataParallel</span></code></a> by diving into details of
every step in one iteration.</p>
<ul class="simple">
<li><p><strong>Prerequisite</strong>: DDP relies on c10d <code class="docutils literal notranslate"><span class="pre">ProcessGroup</span></code> for communications.
Hence, applications must create <code class="docutils literal notranslate"><span class="pre">ProcessGroup</span></code> instances before constructing
DDP.</p></li>
<li><p><strong>Construction</strong>: The DDP constructor takes a reference to the local module,
and broadcasts <code class="docutils literal notranslate"><span class="pre">state_dict()</span></code> from the process with rank 0 to all other
processes in the group to make sure that all model replicas start from the
exact same state. Then, each DDP process creates a local <code class="docutils literal notranslate"><span class="pre">Reducer</span></code>, which
later will take care of the gradients synchronization during the backward
pass. To improve communication efficiency, the <code class="docutils literal notranslate"><span class="pre">Reducer</span></code> organizes parameter
gradients into buckets, and reduces one bucket at a time. Bucket size can be
configured by setting the <cite>bucket_cap_mb</cite> argument in DDP constructor. The
mapping from parameter gradients to buckets is determined at the construction
time, based on the bucket size limit and parameter sizes. Model parameters are
allocated into buckets in (roughly) the reverse order of
<code class="docutils literal notranslate"><span class="pre">Model.parameters()</span></code> from the given model. The reason for using the reverse
order is because DDP expects gradients to become ready during the backward
pass in approximately that order. The figure below shows an example. Note
that, the <code class="docutils literal notranslate"><span class="pre">grad0</span></code> and <code class="docutils literal notranslate"><span class="pre">grad1</span></code> are in <code class="docutils literal notranslate"><span class="pre">bucket1</span></code>, and the other two
gradients are in <code class="docutils literal notranslate"><span class="pre">bucket0</span></code>. Of course, this assumption might not always
be true, and when that happens it could hurt DDP backward speed as the
<code class="docutils literal notranslate"><span class="pre">Reducer</span></code> cannot kick off the communication at the earliest possible time.
Besides bucketing, the <code class="docutils literal notranslate"><span class="pre">Reducer</span></code> also registers autograd hooks during
construction, one hook per parameter. These hooks will be triggered during
the backward pass when the gradient becomes ready.</p></li>
<li><p><strong>Forward Pass</strong>: The DDP takes the input and passes it to the local model,
and then analyzes the output from the local model if
<code class="docutils literal notranslate"><span class="pre">find_unused_parameters</span></code> is set to <code class="docutils literal notranslate"><span class="pre">True</span></code>. This mode allows running
backward on a subgraph of the model, and DDP finds out which parameters are
involved in the backward pass by traversing the autograd graph from the model
output and marking all unused parameters as ready for reduction. During the
backward pass, the <code class="docutils literal notranslate"><span class="pre">Reducer</span></code> would only wait for unready parameters, but it
would still reduce all buckets. Marking a parameter gradient as ready does not
help DDP skip buckets as for now, but it will prevent DDP from waiting for
absent gradients forever during the backward pass. Note that traversing the
autograd graph introduces extra overheads, so applications should only set
<code class="docutils literal notranslate"><span class="pre">find_unused_parameters</span></code> to <code class="docutils literal notranslate"><span class="pre">True</span></code> when necessary.</p></li>
<li><p><strong>Backward Pass</strong>: The <code class="docutils literal notranslate"><span class="pre">backward()</span></code> function is directly invoked on the loss
<code class="docutils literal notranslate"><span class="pre">Tensor</span></code>, which is out of DDP’s control, and DDP uses autograd hooks
registered at construction time to trigger gradients synchronizations. When
one gradient becomes ready, its corresponding DDP hook on that grad
accumulator will fire, and DDP will then mark that parameter gradient as
ready for reduction. When gradients in one bucket are all ready, the
<code class="docutils literal notranslate"><span class="pre">Reducer</span></code> kicks off an asynchronous <code class="docutils literal notranslate"><span class="pre">allreduce</span></code> on that bucket to
calculate mean of gradients across all processes. When all buckets are ready,
the <code class="docutils literal notranslate"><span class="pre">Reducer</span></code> will block waiting for all <code class="docutils literal notranslate"><span class="pre">allreduce</span></code> operations to finish.
When this is done, averaged gradients are written to the <code class="docutils literal notranslate"><span class="pre">param.grad</span></code> field
of all parameters. So after the backward pass, the <cite>grad</cite> field on the same
corresponding parameter across different DDP processes should be the same.</p></li>
<li><p><strong>Optimizer Step</strong>: From the optimizer’s perspective, it is optimizing a local
model. Model replicas on all DDP processes can keep in sync because they all
start from the same state and they have the same averaged gradients in
every iteration.</p></li>
</ul>
<a class="reference internal image-reference" href="https://user-images.githubusercontent.com/16999635/72401724-d296d880-371a-11ea-90ab-737f86543df9.png"><img alt="ddp_grad_sync.png" src="https://user-images.githubusercontent.com/16999635/72401724-d296d880-371a-11ea-90ab-737f86543df9.png" style="width: 700px;" /></a>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p>DDP requires <code class="docutils literal notranslate"><span class="pre">Reducer</span></code> instances on all processes to invoke <code class="docutils literal notranslate"><span class="pre">allreduce</span></code>
in exactly the same order, which is done by always running <code class="docutils literal notranslate"><span class="pre">allreduce</span></code>
in the bucket index order instead of actual bucket ready order. Mismatched
<code class="docutils literal notranslate"><span class="pre">allreduce</span></code> order across processes can lead to wrong results or DDP backward
hang.</p>
</div>
</div>
<div class="section" id="implementation">
<h2>Implementation<a class="headerlink" href="#implementation" title="Permalink to this headline">¶</a></h2>
<p>Below are pointers to the DDP implementation components. The stacked graph shows
the structure of the code.</p>
<div class="section" id="processgroup">
<h3>ProcessGroup<a class="headerlink" href="#processgroup" title="Permalink to this headline">¶</a></h3>
<ul class="simple">
<li><p><a class="reference external" href="https://github.com/pytorch/pytorch/blob/v1.7.0/torch/lib/c10d/ProcessGroup.hpp">ProcessGroup.hpp</a>:
contains the abstract API of all process group implementations. The <code class="docutils literal notranslate"><span class="pre">c10d</span></code>
library provides 3 implementations out of the box, namely,
<cite>ProcessGroupGloo</cite>, <cite>ProcessGroupNCCL</cite>, and <cite>ProcessGroupMPI</cite>.
<code class="docutils literal notranslate"><span class="pre">DistributedDataParallel</span></code> uses <code class="docutils literal notranslate"><span class="pre">ProcessGroup::broadcast()</span></code> to send
model states from the process with rank 0 to others during initialization
and <code class="docutils literal notranslate"><span class="pre">ProcessGroup::allreduce()</span></code> to sum gradients.</p></li>
<li><p><a class="reference external" href="https://github.com/pytorch/pytorch/blob/v1.7.0/torch/lib/c10d/Store.hpp">Store.hpp</a>:
assists the rendezvous service for process group instances to find each other.</p></li>
</ul>
</div>
<div class="section" id="distributeddataparallel">
<h3>DistributedDataParallel<a class="headerlink" href="#distributeddataparallel" title="Permalink to this headline">¶</a></h3>
<ul class="simple">
<li><p><a class="reference external" href="https://github.com/pytorch/pytorch/blob/v1.7.0/torch/nn/parallel/distributed.py">distributed.py</a>:
is the Python entry point for DDP. It implements the initialization steps and
the <code class="docutils literal notranslate"><span class="pre">forward</span></code> function for the <code class="docutils literal notranslate"><span class="pre">nn.parallel.DistributedDataParallel</span></code>
module which call into C++ libraries. Its <code class="docutils literal notranslate"><span class="pre">_sync_param</span></code> function performs
intra-process parameter synchronization when one DDP process works on multiple
devices, and it also broadcasts model buffers from the process with rank 0 to
all other processes. The inter-process parameter synchronization happens in
<code class="docutils literal notranslate"><span class="pre">Reducer.cpp</span></code>.</p></li>
<li><p><a class="reference external" href="https://github.com/pytorch/pytorch/blob/v1.7.0/torch/csrc/distributed/c10d/comm.h">comm.h</a>:
implements the coalesced broadcast helper function which is invoked to
broadcast model states during initialization and synchronize model buffers
before the forward pass.</p></li>
<li><p><a class="reference external" href="https://github.com/pytorch/pytorch/blob/v1.7.0/torch/csrc/distributed/c10d/reducer.h">reducer.h</a>:
provides the core implementation for gradient synchronization in the backward
pass. It has three entry point functions:</p>
<ul>
<li><p><code class="docutils literal notranslate"><span class="pre">Reducer</span></code>: The constructor is called in <code class="docutils literal notranslate"><span class="pre">distributed.py</span></code> which registers
<code class="docutils literal notranslate"><span class="pre">Reducer::autograd_hook()</span></code> to gradient accumulators.</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">autograd_hook()</span></code> function will be invoked by the autograd engine when
a gradient becomes ready.</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">prepare_for_backward()</span></code> is called at the end of DDP forward pass in
<code class="docutils literal notranslate"><span class="pre">distributed.py</span></code>. It traverses the autograd graph to find unused
parameters when <code class="docutils literal notranslate"><span class="pre">find_unused_parameters</span></code> is set to <code class="docutils literal notranslate"><span class="pre">True</span></code> in DDP
constructor.</p></li>
</ul>
</li>
</ul>
<a class="reference internal image-reference" href="https://user-images.githubusercontent.com/16999635/72313120-4e7c1c80-3658-11ea-9c6d-44336b2daeac.png"><img alt="ddp_code.png" src="https://user-images.githubusercontent.com/16999635/72313120-4e7c1c80-3658-11ea-9c6d-44336b2daeac.png" style="width: 400px;" /></a>
</div>
</div>
</div>
</article>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="extending.html" class="btn btn-neutral float-right" title="Extending PyTorch" accesskey="n" rel="next">Next <img src="../_static/images/chevron-right-orange.svg" class="next-page"></a>
<a href="cuda.html" class="btn btn-neutral" title="CUDA semantics" accesskey="p" rel="prev"><img src="../_static/images/chevron-right-orange.svg" class="previous-page"> Previous</a>
</div>
<hr>
<div role="contentinfo">
<p>
© Copyright 2022, PyTorch Contributors.
</p>
</div>
<div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</div>
</footer>
</div>
</div>
<div class="pytorch-content-right" id="pytorch-content-right">
<div class="pytorch-right-menu" id="pytorch-right-menu">
<div class="pytorch-side-scroll" id="pytorch-side-scroll-right">
<ul>
<li><a class="reference internal" href="#">Distributed Data Parallel</a><ul>
<li><a class="reference internal" href="#example">Example</a></li>
<li><a class="reference internal" href="#internal-design">Internal Design</a></li>
<li><a class="reference internal" href="#implementation">Implementation</a><ul>
<li><a class="reference internal" href="#processgroup">ProcessGroup</a></li>
<li><a class="reference internal" href="#distributeddataparallel">DistributedDataParallel</a></li>
</ul>
</li>
</ul>
</li>
</ul>
</div>
</div>
</div>
</section>
</div>
<script type="text/javascript" id="documentation_options" data-url_root="../" src="../_static/documentation_options.js"></script>
<script src="../_static/jquery.js"></script>
<script src="../_static/underscore.js"></script>
<script src="../_static/doctools.js"></script>
<script src="../_static/clipboard.min.js"></script>
<script src="../_static/copybutton.js"></script>
<script type="text/javascript" src="../_static/js/vendor/popper.min.js"></script>
<script type="text/javascript" src="../_static/js/vendor/bootstrap.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/list.js/1.5.0/list.min.js"></script>
<script type="text/javascript" src="../_static/js/theme.js"></script>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
<script script type="text/javascript">
var collapsedSections = ['Notes', 'Language Bindings', 'Libraries', 'Community'];
</script>
<img height="1" width="1" style="border-style:none;" alt="" src="https://www.googleadservices.com/pagead/conversion/795629140/?label=txkmCPmdtosBENSssfsC&guid=ON&script=0"/>
<!-- Begin Footer -->
<div class="container-fluid docs-tutorials-resources" id="docs-tutorials-resources">
<div class="container">
<div class="row">
<div class="col-md-4 text-center">
<h2>Docs</h2>
<p>Access comprehensive developer documentation for PyTorch</p>
<a class="with-right-arrow" href="https://pytorch.org/docs/stable/index.html">View Docs</a>
</div>
<div class="col-md-4 text-center">
<h2>Tutorials</h2>
<p>Get in-depth tutorials for beginners and advanced developers</p>
<a class="with-right-arrow" href="https://pytorch.org/tutorials">View Tutorials</a>
</div>
<div class="col-md-4 text-center">
<h2>Resources</h2>
<p>Find development resources and get your questions answered</p>
<a class="with-right-arrow" href="https://pytorch.org/resources">View Resources</a>
</div>
</div>
</div>
</div>
<footer class="site-footer">
<div class="container footer-container">
<div class="footer-logo-wrapper">
<a href="https://pytorch.org/" class="footer-logo"></a>
</div>
<div class="footer-links-wrapper">
<div class="footer-links-col">
<ul>
<li class="list-title"><a href="https://pytorch.org/">PyTorch</a></li>
<li><a href="https://pytorch.org/get-started">Get Started</a></li>
<li><a href="https://pytorch.org/features">Features</a></li>
<li><a href="https://pytorch.org/ecosystem">Ecosystem</a></li>
<li><a href="https://pytorch.org/blog/">Blog</a></li>
<li><a href="https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md">Contributing</a></li>
</ul>
</div>
<div class="footer-links-col">
<ul>
<li class="list-title"><a href="https://pytorch.org/resources">Resources</a></li>
<li><a href="https://pytorch.org/tutorials">Tutorials</a></li>
<li><a href="https://pytorch.org/docs/stable/index.html">Docs</a></li>
<li><a href="https://discuss.pytorch.org" target="_blank">Discuss</a></li>
<li><a href="https://github.com/pytorch/pytorch/issues" target="_blank">Github Issues</a></li>
<li><a href="https://pytorch.org/assets/brand-guidelines/PyTorch-Brand-Guidelines.pdf" target="_blank">Brand Guidelines</a></li>
</ul>
</div>
<div class="footer-links-col">
<ul>
<li class="list-title">Stay up to date</li>
<li><a href="https://www.facebook.com/pytorch" target="_blank">Facebook</a></li>
<li><a href="https://twitter.com/pytorch" target="_blank">Twitter</a></li>
<li><a href="https://www.youtube.com/pytorch" target="_blank">YouTube</a></li>
<li><a href="https://www.linkedin.com/company/pytorch" target="_blank">LinkedIn</a></li>
</ul>
</div>
<div class="footer-links-col">
<ul>
<li class="list-title">PyTorch Podcasts</li>
<li><a href="https://open.spotify.com/show/6UzHKeiy368jKfQMKKvJY5" target="_blank">Spotify</a></li>
<li><a href="https://podcasts.apple.com/us/podcast/pytorch-developer-podcast/id1566080008" target="_blank">Apple</a></li>
<li><a href="https://www.google.com/podcasts?feed=aHR0cHM6Ly9mZWVkcy5zaW1wbGVjYXN0LmNvbS9PQjVGa0lsOA%3D%3D" target="_blank">Google</a></li>
<li><a href="https://music.amazon.com/podcasts/7a4e6f0e-26c2-49e9-a478-41bd244197d0/PyTorch-Developer-Podcast?" target="_blank">Amazon</a></li>
</ul>
</div>
</div>
<hr size="20" color="white" />
<div class="privacy-policy">
<p class="privacy-policy-links"><a href="https://www.linuxfoundation.org/terms/" target="_blank">Terms</a> | <a href="https://www.linuxfoundation.org/privacy-policy/" target="_blank">Privacy</a></p>
</div>
<hr size="20" color="white" />
<div class="copyright">
<p>© Copyright The Linux Foundation. The PyTorch Foundation is a project of The Linux Foundation.
For web site terms of use, trademark policy and other policies applicable to The PyTorch Foundation please see
<a href="https://www.linuxfoundation.org/policies/" style="color:#ee4c2c">www.linuxfoundation.org/policies/</a>. The PyTorch Foundation supports the PyTorch open source
project, which has been established as PyTorch Project a Series of LF Projects, LLC. For policies applicable to the PyTorch Project a Series of LF Projects, LLC,
please see <a href="https://www.lfprojects.org/policies/" style="color:#ee4c2c">www.lfprojects.org/policies/</a>.</p>
</div>
</div>
</footer>
<div class="cookie-banner-wrapper">
<div class="container">
<p class="gdpr-notice">To analyze traffic and optimize your experience, we serve cookies on this site. By clicking or navigating, you agree to allow our usage of cookies. As the current maintainers of this site, Facebook’s Cookies Policy applies. Learn more, including about available controls: <a href="https://www.facebook.com/policies/cookies/">Cookies Policy</a>.</p>
<img class="close-button" src="../_static/images/pytorch-x.svg">
</div>
</div>
<!-- End Footer -->
<!-- Begin Mobile Menu -->
<div class="mobile-main-menu">
<div class="container-fluid">
<div class="container">
<div class="mobile-main-menu-header-container">
<a class="header-logo" href="https://pytorch.org/" aria-label="PyTorch"></a>
<a class="main-menu-close-button" href="#" data-behavior="close-mobile-menu"></a>
</div>
</div>
</div>
<div class="mobile-main-menu-links-container">
<div class="main-menu">
<ul>
<li>
<a href="https://pytorch.org/get-started">Get Started</a>
</li>
<li>
<a href="https://pytorch.org/ecosystem">Ecosystem</a>
</li>
<li>
<a href="https://pytorch.org/mobile">Mobile</a>
</li>
<li>
<a href="https://pytorch.org/hub">PyTorch Hub</a>
</li>
<li>
<a href="https://pytorch.org/blog/">Blog</a>
</li>
<li>
<a href="https://pytorch.org/tutorials">Tutorials</a>
</li>
<li class="resources-mobile-menu-title" class="active">
Docs
</li>
<ul class="resources-mobile-menu-items">
<li>
<a href="https://pytorch.org/docs/stable/index.html">PyTorch</a>
</li>
<li>
<a href="https://pytorch.org/audio/stable/index.html">torchaudio</a>
</li>
<li>
<a href="https://pytorch.org/text/stable/index.html">torchtext</a>
</li>
<li>
<a href="https://pytorch.org/vision/stable/index.html">torchvision</a>
</li>
<li>
<a href="https://pytorch.org/serve/">TorchServe</a>
</li>
<li>
<a href="https://pytorch.org/torchx/">TorchX</a>
</li>
<li>
<a href="https://pytorch.org/xla">PyTorch on XLA Devices</a>
</li>
</ul>
<li class="resources-mobile-menu-title">
Resources
</li>
<ul class="resources-mobile-menu-items">
<li>
<a href="https://pytorch.org/resources">Developer Resources</a>
</li>
<li>
<a href="https://pytorch.org/features">About</a>
</li>
<li>
<a href="https://pytorch.org/hub">Models (Beta)</a>
</li>
<li>
<a href="https://pytorch.org/#community-module">Community</a>
</li>
<li>
<a href="https://discuss.pytorch.org/">Forums</a>
</li>
</ul>
<li>
<a href="https://github.com/pytorch/pytorch">Github</a>
</li>
</ul>
</div>
</div>
</div>
<!-- End Mobile Menu -->
<script type="text/javascript" src="../_static/js/vendor/anchor.min.js"></script>
<script type="text/javascript">
$(document).ready(function() {
mobileMenu.bind();
mobileTOC.bind();
pytorchAnchors.bind();
sideMenus.bind();
scrollToAnchor.bind();
highlightNavigation.bind();
mainMenuDropdown.bind();
filterTags.bind();
// Add class to links that have code blocks, since we cannot create links in code blocks
$("article.pytorch-article a span.pre").each(function(e) {
$(this).closest("a").addClass("has-code");
});
})
</script>
</body>
</html>