forked from pytorch/pytorch.github.io
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgradcheck.html
1013 lines (809 loc) · 234 KB
/
gradcheck.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="generator" content="Docutils 0.18.1: http://docutils.sourceforge.net/" />
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Gradcheck mechanics — PyTorch 1.13 documentation</title>
<link rel="canonical" href="https://pytorch.org/docs/stable/notes/gradcheck.html"/>
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<!-- <link rel="stylesheet" href="../_static/pygments.css" type="text/css" /> -->
<link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../_static/copybutton.css" type="text/css" />
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.css" type="text/css" />
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.css" type="text/css" />
<link rel="stylesheet" href="../_static/katex-math.css" type="text/css" />
<link rel="stylesheet" href="../_static/sphinx-dropdown.css" type="text/css" />
<link rel="stylesheet" href="../_static/panels-bootstrap.min.css" type="text/css" />
<link rel="stylesheet" href="../_static/css/jit.css" type="text/css" />
<link rel="index" title="Index" href="../genindex.html" />
<link rel="search" title="Search" href="../search.html" />
<link rel="next" title="HIP (ROCm) semantics" href="hip.html" />
<link rel="prev" title="Frequently Asked Questions" href="faq.html" />
<!-- Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=UA-117752657-2"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-117752657-2');
</script>
<!-- End Google Analytics -->
<script src="../_static/js/modernizr.min.js"></script>
<!-- Preload the theme fonts -->
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-book.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-medium.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/IBMPlexMono/IBMPlexMono-Medium.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-bold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-medium-italic.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/IBMPlexMono/IBMPlexMono-SemiBold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<!-- Preload the katex fonts -->
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Math-Italic.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Main-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Main-Bold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Size1-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Size4-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Size2-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Size3-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Caligraphic-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.15.2/css/all.css" integrity="sha384-vSIIfh2YWi9wW0r9iZe7RJPrKwp6bG+s9QZMoITbCckVJqGCCRhc+ccxNcdpHuYu" crossorigin="anonymous">
</head>
<div class="container-fluid header-holder tutorials-header" id="header-holder">
<div class="container">
<div class="header-container">
<a class="header-logo" href="https://pytorch.org/" aria-label="PyTorch"></a>
<div class="main-menu">
<ul>
<li>
<a href="https://pytorch.org/get-started">Get Started</a>
</li>
<li>
<a href="https://pytorch.org/ecosystem">Ecosystem</a>
</li>
<li>
<a href="https://pytorch.org/mobile">Mobile</a>
</li>
<li>
<a href="https://pytorch.org/blog/">Blog</a>
</li>
<li>
<a href="https://pytorch.org/tutorials">Tutorials</a>
</li>
<li class="active docs-active">
<div id="resourcesDropdownButton" data-toggle="resources-dropdown" class="resources-dropdown">
<a class="resource-option with-down-orange-arrow">
Docs
</a>
<div class="resources-dropdown-menu">
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/docs/stable/index.html">
<span class="dropdown-title">PyTorch</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/audio/stable/index.html">
<span class="dropdown-title">torchaudio</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/text/stable/index.html">
<span class="dropdown-title">torchtext</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/vision/stable/index.html">
<span class="dropdown-title">torchvision</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/torcharrow">
<span class="dropdown-title">torcharrow</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/data">
<span class="dropdown-title">TorchData</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/torchrec">
<span class="dropdown-title">TorchRec</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/serve/">
<span class="dropdown-title">TorchServe</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/torchx/">
<span class="dropdown-title">TorchX</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/xla">
<span class="dropdown-title">PyTorch on XLA Devices</span>
<p></p>
</a>
</div>
</li>
<li>
<div id="resourcesDropdownButton" data-toggle="resources-dropdown" class="resources-dropdown">
<a class="resource-option with-down-arrow">
Resources
</a>
<div class="resources-dropdown-menu">
<a class="nav-dropdown-item" href="https://pytorch.org/features">
<span class="dropdown-title">About</span>
<p>Learn about PyTorch’s features and capabilities</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/foundation">
<span class="dropdown-title">PyTorch Foundation</span>
<p>Learn about the PyTorch foundation</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/#community-module">
<span class="dropdown-title">Community</span>
<p>Join the PyTorch developer community to contribute, learn, and get your questions answered.</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/community-stories">
<span class="dropdown-title">Community Stories</span>
<p>Learn how our community solves real, everyday machine learning problems with PyTorch.</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/resources">
<span class="dropdown-title">Developer Resources</span>
<p>Find resources and get questions answered</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/events">
<span class="dropdown-title">Events</span>
<p>Find events, webinars, and podcasts</p>
</a>
<a class="nav-dropdown-item" href="https://discuss.pytorch.org/" target="_blank">
<span class="dropdown-title">Forums</span>
<p>A place to discuss PyTorch code, issues, install, research</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/hub">
<span class="dropdown-title">Models (Beta)</span>
<p>Discover, publish, and reuse pre-trained models</p>
</a>
</div>
</div>
</li>
<li>
<a href="https://github.com/pytorch/pytorch">GitHub</a>
</li>
</ul>
</div>
<a class="main-menu-open-button" href="#" data-behavior="open-mobile-menu"></a>
</div>
</div>
</div>
<body class="pytorch-body">
<div class="table-of-contents-link-wrapper">
<span>Table of Contents</span>
<a href="#" class="toggle-table-of-contents" data-behavior="toggle-table-of-contents"></a>
</div>
<nav data-toggle="wy-nav-shift" class="pytorch-left-menu" id="pytorch-left-menu">
<div class="pytorch-side-scroll">
<div class="pytorch-menu pytorch-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<div class="pytorch-left-menu-search">
<div class="version">
<a href='https://pytorch.org/docs/versions.html'>1.13 ▼</a>
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../search.html" method="get">
<input type="text" name="q" placeholder="Search Docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<p class="caption" role="heading"><span class="caption-text">Community</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../community/build_ci_governance.html">PyTorch Governance | Build + CI</a></li>
<li class="toctree-l1"><a class="reference internal" href="../community/contribution_guide.html">PyTorch Contribution Guide</a></li>
<li class="toctree-l1"><a class="reference internal" href="../community/design.html">PyTorch Design Philosophy</a></li>
<li class="toctree-l1"><a class="reference internal" href="../community/governance.html">PyTorch Governance | Mechanics</a></li>
<li class="toctree-l1"><a class="reference internal" href="../community/persons_of_interest.html">PyTorch Governance | Maintainers</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Developer Notes</span></p>
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="amp_examples.html">CUDA Automatic Mixed Precision examples</a></li>
<li class="toctree-l1"><a class="reference internal" href="autograd.html">Autograd mechanics</a></li>
<li class="toctree-l1"><a class="reference internal" href="broadcasting.html">Broadcasting semantics</a></li>
<li class="toctree-l1"><a class="reference internal" href="cpu_threading_torchscript_inference.html">CPU threading and TorchScript inference</a></li>
<li class="toctree-l1"><a class="reference internal" href="cuda.html">CUDA semantics</a></li>
<li class="toctree-l1"><a class="reference internal" href="ddp.html">Distributed Data Parallel</a></li>
<li class="toctree-l1"><a class="reference internal" href="extending.html">Extending PyTorch</a></li>
<li class="toctree-l1"><a class="reference internal" href="faq.html">Frequently Asked Questions</a></li>
<li class="toctree-l1 current"><a class="current reference internal" href="#">Gradcheck mechanics</a></li>
<li class="toctree-l1"><a class="reference internal" href="hip.html">HIP (ROCm) semantics</a></li>
<li class="toctree-l1"><a class="reference internal" href="large_scale_deployments.html">Features for large-scale deployments</a></li>
<li class="toctree-l1"><a class="reference internal" href="modules.html">Modules</a></li>
<li class="toctree-l1"><a class="reference internal" href="mps.html">MPS backend</a></li>
<li class="toctree-l1"><a class="reference internal" href="multiprocessing.html">Multiprocessing best practices</a></li>
<li class="toctree-l1"><a class="reference internal" href="numerical_accuracy.html">Numerical accuracy</a></li>
<li class="toctree-l1"><a class="reference internal" href="randomness.html">Reproducibility</a></li>
<li class="toctree-l1"><a class="reference internal" href="serialization.html">Serialization semantics</a></li>
<li class="toctree-l1"><a class="reference internal" href="windows.html">Windows FAQ</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Language Bindings</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../cpp_index.html">C++</a></li>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/javadoc/">Javadoc</a></li>
<li class="toctree-l1"><a class="reference internal" href="../deploy.html">torch::deploy</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Python API</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../torch.html">torch</a></li>
<li class="toctree-l1"><a class="reference internal" href="../nn.html">torch.nn</a></li>
<li class="toctree-l1"><a class="reference internal" href="../nn.functional.html">torch.nn.functional</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tensors.html">torch.Tensor</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tensor_attributes.html">Tensor Attributes</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tensor_view.html">Tensor Views</a></li>
<li class="toctree-l1"><a class="reference internal" href="../amp.html">torch.amp</a></li>
<li class="toctree-l1"><a class="reference internal" href="../autograd.html">torch.autograd</a></li>
<li class="toctree-l1"><a class="reference internal" href="../library.html">torch.library</a></li>
<li class="toctree-l1"><a class="reference internal" href="../cuda.html">torch.cuda</a></li>
<li class="toctree-l1"><a class="reference internal" href="../backends.html">torch.backends</a></li>
<li class="toctree-l1"><a class="reference internal" href="../distributed.html">torch.distributed</a></li>
<li class="toctree-l1"><a class="reference internal" href="../distributed.algorithms.join.html">torch.distributed.algorithms.join</a></li>
<li class="toctree-l1"><a class="reference internal" href="../distributed.elastic.html">torch.distributed.elastic</a></li>
<li class="toctree-l1"><a class="reference internal" href="../fsdp.html">torch.distributed.fsdp</a></li>
<li class="toctree-l1"><a class="reference internal" href="../distributed.optim.html">torch.distributed.optim</a></li>
<li class="toctree-l1"><a class="reference internal" href="../distributions.html">torch.distributions</a></li>
<li class="toctree-l1"><a class="reference internal" href="../fft.html">torch.fft</a></li>
<li class="toctree-l1"><a class="reference internal" href="../futures.html">torch.futures</a></li>
<li class="toctree-l1"><a class="reference internal" href="../fx.html">torch.fx</a></li>
<li class="toctree-l1"><a class="reference internal" href="../hub.html">torch.hub</a></li>
<li class="toctree-l1"><a class="reference internal" href="../jit.html">torch.jit</a></li>
<li class="toctree-l1"><a class="reference internal" href="../linalg.html">torch.linalg</a></li>
<li class="toctree-l1"><a class="reference internal" href="../monitor.html">torch.monitor</a></li>
<li class="toctree-l1"><a class="reference internal" href="../special.html">torch.special</a></li>
<li class="toctree-l1"><a class="reference internal" href="../torch.overrides.html">torch.overrides</a></li>
<li class="toctree-l1"><a class="reference internal" href="../package.html">torch.package</a></li>
<li class="toctree-l1"><a class="reference internal" href="../profiler.html">torch.profiler</a></li>
<li class="toctree-l1"><a class="reference internal" href="../nn.init.html">torch.nn.init</a></li>
<li class="toctree-l1"><a class="reference internal" href="../onnx.html">torch.onnx</a></li>
<li class="toctree-l1"><a class="reference internal" href="../optim.html">torch.optim</a></li>
<li class="toctree-l1"><a class="reference internal" href="../complex_numbers.html">Complex Numbers</a></li>
<li class="toctree-l1"><a class="reference internal" href="../ddp_comm_hooks.html">DDP Communication Hooks</a></li>
<li class="toctree-l1"><a class="reference internal" href="../pipeline.html">Pipeline Parallelism</a></li>
<li class="toctree-l1"><a class="reference internal" href="../quantization.html">Quantization</a></li>
<li class="toctree-l1"><a class="reference internal" href="../rpc.html">Distributed RPC Framework</a></li>
<li class="toctree-l1"><a class="reference internal" href="../random.html">torch.random</a></li>
<li class="toctree-l1"><a class="reference internal" href="../masked.html">torch.masked</a></li>
<li class="toctree-l1"><a class="reference internal" href="../nested.html">torch.nested</a></li>
<li class="toctree-l1"><a class="reference internal" href="../sparse.html">torch.sparse</a></li>
<li class="toctree-l1"><a class="reference internal" href="../storage.html">torch.Storage</a></li>
<li class="toctree-l1"><a class="reference internal" href="../testing.html">torch.testing</a></li>
<li class="toctree-l1"><a class="reference internal" href="../benchmark_utils.html">torch.utils.benchmark</a></li>
<li class="toctree-l1"><a class="reference internal" href="../bottleneck.html">torch.utils.bottleneck</a></li>
<li class="toctree-l1"><a class="reference internal" href="../checkpoint.html">torch.utils.checkpoint</a></li>
<li class="toctree-l1"><a class="reference internal" href="../cpp_extension.html">torch.utils.cpp_extension</a></li>
<li class="toctree-l1"><a class="reference internal" href="../data.html">torch.utils.data</a></li>
<li class="toctree-l1"><a class="reference internal" href="../jit_utils.html">torch.utils.jit</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dlpack.html">torch.utils.dlpack</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mobile_optimizer.html">torch.utils.mobile_optimizer</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model_zoo.html">torch.utils.model_zoo</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tensorboard.html">torch.utils.tensorboard</a></li>
<li class="toctree-l1"><a class="reference internal" href="../type_info.html">Type Info</a></li>
<li class="toctree-l1"><a class="reference internal" href="../named_tensor.html">Named Tensors</a></li>
<li class="toctree-l1"><a class="reference internal" href="../name_inference.html">Named Tensors operator coverage</a></li>
<li class="toctree-l1"><a class="reference internal" href="../config_mod.html">torch.__config__</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Libraries</span></p>
<ul>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/audio/stable">torchaudio</a></li>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/data">TorchData</a></li>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/torchrec">TorchRec</a></li>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/serve">TorchServe</a></li>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/text/stable">torchtext</a></li>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/vision/stable">torchvision</a></li>
<li class="toctree-l1"><a class="reference external" href="http://pytorch.org/xla/">PyTorch on XLA Devices</a></li>
</ul>
</div>
</div>
</nav>
<div class="pytorch-container">
<div class="pytorch-page-level-bar" id="pytorch-page-level-bar">
<div class="pytorch-breadcrumbs-wrapper">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="pytorch-breadcrumbs">
<li>
<a href="../index.html">
Docs
</a> >
</li>
<li>Gradcheck mechanics</li>
<li class="pytorch-breadcrumbs-aside">
<a href="../_sources/notes/gradcheck.rst.txt" rel="nofollow"><img src="../_static/images/view-page-source-icon.svg"></a>
</li>
</ul>
</div>
</div>
<div class="pytorch-shortcuts-wrapper" id="pytorch-shortcuts-wrapper">
Shortcuts
</div>
</div>
<section data-toggle="wy-nav-shift" id="pytorch-content-wrap" class="pytorch-content-wrap">
<div class="pytorch-content-left">
<div class="rst-content">
<div role="main" class="main-content" itemscope="itemscope" itemtype="http://schema.org/Article">
<article itemprop="articleBody" id="pytorch-article" class="pytorch-article">
<section id="gradcheck-mechanics">
<span id="id1"></span><h1>Gradcheck mechanics<a class="headerlink" href="#gradcheck-mechanics" title="Permalink to this heading">¶</a></h1>
<p>This note presents an overview of how the <a class="reference internal" href="../generated/torch.autograd.gradcheck.html#torch.autograd.gradcheck" title="torch.autograd.gradcheck"><code class="xref py py-meth docutils literal notranslate"><span class="pre">gradcheck()</span></code></a> and <a class="reference internal" href="../generated/torch.autograd.gradgradcheck.html#torch.autograd.gradgradcheck" title="torch.autograd.gradgradcheck"><code class="xref py py-meth docutils literal notranslate"><span class="pre">gradgradcheck()</span></code></a> functions work.</p>
<p>It will cover both forward and backward mode AD for both real and complex-valued functions as well as higher-order derivatives.
This note also covers both the default behavior of gradcheck as well as the case where <code class="code docutils literal notranslate"><span class="pre">fast_mode=True</span></code> argument is passed (referred to as fast gradcheck below).</p>
<nav class="contents local" id="contents">
<ul class="simple">
<li><p><a class="reference internal" href="#notations-and-background-information" id="id2">Notations and background information</a></p></li>
<li><p><a class="reference internal" href="#default-backward-mode-gradcheck-behavior" id="id3">Default backward mode gradcheck behavior</a></p>
<ul>
<li><p><a class="reference internal" href="#real-to-real-functions" id="id4">Real-to-real functions</a></p></li>
<li><p><a class="reference internal" href="#complex-to-real-functions" id="id5">Complex-to-real functions</a></p></li>
<li><p><a class="reference internal" href="#functions-with-complex-outputs" id="id6">Functions with complex outputs</a></p></li>
</ul>
</li>
<li><p><a class="reference internal" href="#fast-backward-mode-gradcheck" id="id7">Fast backward mode gradcheck</a></p>
<ul>
<li><p><a class="reference internal" href="#fast-gradcheck-for-real-to-real-functions" id="id8">Fast gradcheck for real-to-real functions</a></p></li>
<li><p><a class="reference internal" href="#fast-gradcheck-for-complex-to-real-functions" id="id9">Fast gradcheck for complex-to-real functions</a></p></li>
<li><p><a class="reference internal" href="#fast-gradcheck-for-functions-with-complex-outputs" id="id10">Fast gradcheck for functions with complex outputs</a></p></li>
</ul>
</li>
<li><p><a class="reference internal" href="#gradgradcheck-implementation" id="id11">Gradgradcheck implementation</a></p></li>
</ul>
</nav>
<section id="notations-and-background-information">
<h2><a class="toc-backref" href="#id2" role="doc-backlink">Notations and background information</a><a class="headerlink" href="#notations-and-background-information" title="Permalink to this heading">¶</a></h2>
<p>Throughout this note, we will use the following convention:</p>
<ol class="arabic simple">
<li><p><span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">x</span></span></span></span></span>, <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi></mrow><annotation encoding="application/x-tex">y</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span></span></span></span>, <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi></mrow><annotation encoding="application/x-tex">a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">a</span></span></span></span></span>, <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>b</mi></mrow><annotation encoding="application/x-tex">b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">b</span></span></span></span></span>, <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>v</mi></mrow><annotation encoding="application/x-tex">v</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">v</span></span></span></span></span>, <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>u</mi></mrow><annotation encoding="application/x-tex">u</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">u</span></span></span></span></span>, <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>u</mi><mi>r</mi></mrow><annotation encoding="application/x-tex">ur</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">u</span><span class="mord mathnormal" style="margin-right:0.02778em;">r</span></span></span></span></span> and <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>u</mi><mi>i</mi></mrow><annotation encoding="application/x-tex">ui</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6595em;"></span><span class="mord mathnormal">u</span><span class="mord mathnormal">i</span></span></span></span></span> are real-valued vectors and <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>z</mi></mrow><annotation encoding="application/x-tex">z</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal" style="margin-right:0.04398em;">z</span></span></span></span></span> is a complex-valued vector that can be rewritten in terms of two real-valued vectors as <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>z</mi><mo>=</mo><mi>a</mi><mo>+</mo><mi>i</mi><mi>b</mi></mrow><annotation encoding="application/x-tex">z = a + i b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal" style="margin-right:0.04398em;">z</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">ib</span></span></span></span></span>.</p></li>
<li><p><span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>N</mi></mrow><annotation encoding="application/x-tex">N</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">N</span></span></span></span></span> and <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>M</mi></mrow><annotation encoding="application/x-tex">M</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">M</span></span></span></span></span> are two integers that we will use for the dimension of the input and output space respectively.</p></li>
<li><p><span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>f</mi><mo>:</mo><msup><mi mathvariant="script">R</mi><mi>N</mi></msup><mo>→</mo><msup><mi mathvariant="script">R</mi><mi>M</mi></msup></mrow><annotation encoding="application/x-tex">f: \mathcal{R}^N \to \mathcal{R}^M</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8413em;"></span><span class="mord"><span class="mord mathcal">R</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.10903em;">N</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">→</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8413em;"></span><span class="mord"><span class="mord mathcal">R</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.10903em;">M</span></span></span></span></span></span></span></span></span></span></span></span> is our basic real-to-real function such that <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi><mo>=</mo><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">y = f(x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span></span>.</p></li>
<li><p><span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>g</mi><mo>:</mo><msup><mi mathvariant="script">C</mi><mi>N</mi></msup><mo>→</mo><msup><mi mathvariant="script">R</mi><mi>M</mi></msup></mrow><annotation encoding="application/x-tex">g: \mathcal{C}^N \to \mathcal{R}^M</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8413em;"></span><span class="mord"><span class="mord mathcal" style="margin-right:0.05834em;">C</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.10903em;">N</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">→</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8413em;"></span><span class="mord"><span class="mord mathcal">R</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.10903em;">M</span></span></span></span></span></span></span></span></span></span></span></span> is our basic complex-to-real function such that <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi><mo>=</mo><mi>g</mi><mo stretchy="false">(</mo><mi>z</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">y = g(z)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.04398em;">z</span><span class="mclose">)</span></span></span></span></span>.</p></li>
</ol>
<p>For the simple real-to-real case, we write as <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>J</mi><mi>f</mi></msub></mrow><annotation encoding="application/x-tex">J_f</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9694em;vertical-align:-0.2861em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.09618em;">J</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0962em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.10764em;">f</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span></span></span> the Jacobian matrix associated with <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>f</mi></mrow><annotation encoding="application/x-tex">f</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span></span></span></span></span> of size <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>M</mi><mo>×</mo><mi>N</mi></mrow><annotation encoding="application/x-tex">M \times N</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">M</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">N</span></span></span></span></span>.
This matrix contains all the partial derivatives such that the entry at position <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mi>i</mi><mo separator="true">,</mo><mi>j</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(i, j)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal">i</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span><span class="mclose">)</span></span></span></span></span> contains <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mfrac><mrow><mi mathvariant="normal">∂</mi><msub><mi>y</mi><mi>i</mi></msub></mrow><mrow><mi mathvariant="normal">∂</mi><msub><mi>x</mi><mi>j</mi></msub></mrow></mfrac></mrow><annotation encoding="application/x-tex">\frac{\partial y_i}{\partial x_j}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.4745em;vertical-align:-0.5423em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9322em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight" style="margin-right:0.05556em;">∂</span><span class="mord mtight"><span class="mord mathnormal mtight">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3281em;"><span style="top:-2.357em;margin-left:0em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathnormal mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2819em;"><span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.4461em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight" style="margin-right:0.05556em;">∂</span><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3281em;"><span style="top:-2.357em;margin-left:-0.0359em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.5423em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span>.
Backward mode AD is then computing, for a given vector <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>v</mi></mrow><annotation encoding="application/x-tex">v</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">v</span></span></span></span></span> of size <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>M</mi></mrow><annotation encoding="application/x-tex">M</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">M</span></span></span></span></span>, the quantity <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>v</mi><mi>T</mi></msup><msub><mi>J</mi><mi>f</mi></msub></mrow><annotation encoding="application/x-tex">v^T J_f</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.1274em;vertical-align:-0.2861em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span></span></span></span></span></span></span></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.09618em;">J</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0962em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.10764em;">f</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span></span></span>.
Forward mode AD on the other hand is computing, for a given vector <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>u</mi></mrow><annotation encoding="application/x-tex">u</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">u</span></span></span></span></span> of size <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>N</mi></mrow><annotation encoding="application/x-tex">N</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">N</span></span></span></span></span>, the quantity <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>J</mi><mi>f</mi></msub><mi>u</mi></mrow><annotation encoding="application/x-tex">J_f u</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9694em;vertical-align:-0.2861em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.09618em;">J</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0962em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.10764em;">f</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mord mathnormal">u</span></span></span></span></span>.</p>
<p>For functions that contain complex values, the story is a lot more complex. We only provide the gist here and the full description can be found at <a class="reference internal" href="autograd.html#complex-autograd-doc"><span class="std std-ref">Autograd for Complex Numbers</span></a>.</p>
<p>The constraints to satisfy complex differentiability (Cauchy-Riemann equations) are too restrictive for all real-valued loss functions, so we instead opted to use Wirtinger calculus.
In a basic setting of Wirtinger calculus, the chain rule requires access to both the Wirtinger derivative (called <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>W</mi></mrow><annotation encoding="application/x-tex">W</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">W</span></span></span></span></span> below) and the Conjugate Wirtinger derivative (called <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>C</mi><mi>W</mi></mrow><annotation encoding="application/x-tex">CW</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="mord mathnormal" style="margin-right:0.13889em;">W</span></span></span></span></span> below).
Both <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>W</mi></mrow><annotation encoding="application/x-tex">W</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">W</span></span></span></span></span> and <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>C</mi><mi>W</mi></mrow><annotation encoding="application/x-tex">CW</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="mord mathnormal" style="margin-right:0.13889em;">W</span></span></span></span></span> need to be propagated because in general, despite their name, one is not the complex conjugate of the other.</p>
<p>To avoid having to propagate both values, for backward mode AD, we always work under the assumption that the function whose derivative is being calculated is either a real-valued function or is part of a bigger real-valued function. This assumption means that all the intermediary gradients we compute during the backward pass are also associated with real-valued functions.
In practice, this assumption is not restrictive when doing optimization as such problem require real-valued objectives (as there is no natural ordering of the complex numbers).</p>
<p>Under this assumption, using <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>W</mi></mrow><annotation encoding="application/x-tex">W</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">W</span></span></span></span></span> and <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>C</mi><mi>W</mi></mrow><annotation encoding="application/x-tex">CW</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="mord mathnormal" style="margin-right:0.13889em;">W</span></span></span></span></span> definitions, we can show that <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>W</mi><mo>=</mo><mi>C</mi><msup><mi>W</mi><mo>∗</mo></msup></mrow><annotation encoding="application/x-tex">W = CW^*</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">W</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6887em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">W</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6887em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mbin mtight">∗</span></span></span></span></span></span></span></span></span></span></span></span> (we use <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>∗</mo></mrow><annotation encoding="application/x-tex">*</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4653em;"></span><span class="mord">∗</span></span></span></span></span> to denote complex conjugation here) and so only one of the two values actually need to be “backwarded through the graph” as the other one can easily be recovered.
To simplify internal computations, PyTorch uses <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2</mn><mo>∗</mo><mi>C</mi><mi>W</mi></mrow><annotation encoding="application/x-tex">2 * CW</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">2</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∗</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="mord mathnormal" style="margin-right:0.13889em;">W</span></span></span></span></span> as the value it backwards and returns when the user asks for gradients.
Similarly to the real case, when the output is actually in <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="script">R</mi><mi>M</mi></msup></mrow><annotation encoding="application/x-tex">\mathcal{R}^M</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8413em;"></span><span class="mord"><span class="mord mathcal">R</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.10903em;">M</span></span></span></span></span></span></span></span></span></span></span></span>, backward mode AD does not compute <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2</mn><mo>∗</mo><mi>C</mi><mi>W</mi></mrow><annotation encoding="application/x-tex">2 * CW</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">2</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∗</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="mord mathnormal" style="margin-right:0.13889em;">W</span></span></span></span></span> but only <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>v</mi><mi>T</mi></msup><mo stretchy="false">(</mo><mn>2</mn><mo>∗</mo><mi>C</mi><mi>W</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">v^T (2 * CW)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0913em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord">2</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∗</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="mord mathnormal" style="margin-right:0.13889em;">W</span><span class="mclose">)</span></span></span></span></span> for a given vector <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>v</mi><mo>∈</mo><msup><mi mathvariant="script">R</mi><mi>M</mi></msup></mrow><annotation encoding="application/x-tex">v \in \mathcal{R}^M</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">v</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8413em;"></span><span class="mord"><span class="mord mathcal">R</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.10903em;">M</span></span></span></span></span></span></span></span></span></span></span></span>.</p>
<p>For forward mode AD, we use a similar logic, in this case, assuming that the function is part of a larger function whose input is in <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="script">R</mi></mrow><annotation encoding="application/x-tex">\mathcal{R}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathcal">R</span></span></span></span></span>. Under this assumption, we can make a similar claim that every intermediary result corresponds to a function whose input is in <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="script">R</mi></mrow><annotation encoding="application/x-tex">\mathcal{R}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathcal">R</span></span></span></span></span> and in this case, using <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>W</mi></mrow><annotation encoding="application/x-tex">W</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">W</span></span></span></span></span> and <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>C</mi><mi>W</mi></mrow><annotation encoding="application/x-tex">CW</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="mord mathnormal" style="margin-right:0.13889em;">W</span></span></span></span></span> definitions, we can show that <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>W</mi><mo>=</mo><mi>C</mi><mi>W</mi></mrow><annotation encoding="application/x-tex">W = CW</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">W</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="mord mathnormal" style="margin-right:0.13889em;">W</span></span></span></span></span> for the intermediary functions.
To make sure the forward and backward mode compute the same quantities in the elementary case of a one dimensional function, the forward mode also computes <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2</mn><mo>∗</mo><mi>C</mi><mi>W</mi></mrow><annotation encoding="application/x-tex">2 * CW</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">2</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∗</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="mord mathnormal" style="margin-right:0.13889em;">W</span></span></span></span></span>.
Similarly to the real case, when the input is actually in <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="script">R</mi><mi>N</mi></msup></mrow><annotation encoding="application/x-tex">\mathcal{R}^N</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8413em;"></span><span class="mord"><span class="mord mathcal">R</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.10903em;">N</span></span></span></span></span></span></span></span></span></span></span></span>, forward mode AD does not compute <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2</mn><mo>∗</mo><mi>C</mi><mi>W</mi></mrow><annotation encoding="application/x-tex">2 * CW</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">2</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∗</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="mord mathnormal" style="margin-right:0.13889em;">W</span></span></span></span></span> but only <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mn>2</mn><mo>∗</mo><mi>C</mi><mi>W</mi><mo stretchy="false">)</mo><mi>u</mi></mrow><annotation encoding="application/x-tex">(2 * CW) u</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">2</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∗</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="mord mathnormal" style="margin-right:0.13889em;">W</span><span class="mclose">)</span><span class="mord mathnormal">u</span></span></span></span></span> for a given vector <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>u</mi><mo>∈</mo><msup><mi mathvariant="script">R</mi><mi>N</mi></msup></mrow><annotation encoding="application/x-tex">u \in \mathcal{R}^N</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">u</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8413em;"></span><span class="mord"><span class="mord mathcal">R</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.10903em;">N</span></span></span></span></span></span></span></span></span></span></span></span>.</p>
</section>
<section id="default-backward-mode-gradcheck-behavior">
<h2><a class="toc-backref" href="#id3" role="doc-backlink">Default backward mode gradcheck behavior</a><a class="headerlink" href="#default-backward-mode-gradcheck-behavior" title="Permalink to this heading">¶</a></h2>
<section id="real-to-real-functions">
<h3><a class="toc-backref" href="#id4" role="doc-backlink">Real-to-real functions</a><a class="headerlink" href="#real-to-real-functions" title="Permalink to this heading">¶</a></h3>
<p>To test a function <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>f</mi><mo>:</mo><msup><mi mathvariant="script">R</mi><mi>N</mi></msup><mo>→</mo><msup><mi mathvariant="script">R</mi><mi>M</mi></msup><mo separator="true">,</mo><mi>x</mi><mo>→</mo><mi>y</mi></mrow><annotation encoding="application/x-tex">f: \mathcal{R}^N \to \mathcal{R}^M, x \to y</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8413em;"></span><span class="mord"><span class="mord mathcal">R</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.10903em;">N</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">→</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.0358em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathcal">R</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.10903em;">M</span></span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">→</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span></span></span></span>, we reconstruct the full Jacobian matrix <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>J</mi><mi>f</mi></msub></mrow><annotation encoding="application/x-tex">J_f</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9694em;vertical-align:-0.2861em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.09618em;">J</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0962em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.10764em;">f</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span></span></span> of size <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>M</mi><mo>×</mo><mi>N</mi></mrow><annotation encoding="application/x-tex">M \times N</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">M</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">N</span></span></span></span></span> in two ways: analytically and numerically.
The analytical version uses our backward mode AD while the numerical version uses finite difference.
The two reconstructed Jacobian matrices are then compared elementwise for equality.</p>
<section id="default-real-input-numerical-evaluation">
<h4>Default real input numerical evaluation<a class="headerlink" href="#default-real-input-numerical-evaluation" title="Permalink to this heading">¶</a></h4>
<p>If we consider the elementary case of a one-dimensional function (<span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>N</mi><mo>=</mo><mi>M</mi><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">N = M = 1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">N</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">M</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span></span>), then we can use the basic finite difference formula from <a class="reference external" href="https://en.wikipedia.org/wiki/Finite_difference">the wikipedia article</a>. We use the “central difference” for better numerical properties:</p>
<div class="math">
<span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mfrac><mrow><mi mathvariant="normal">∂</mi><mi>y</mi></mrow><mrow><mi mathvariant="normal">∂</mi><mi>x</mi></mrow></mfrac><mo>≈</mo><mfrac><mrow><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo>+</mo><mi>e</mi><mi>p</mi><mi>s</mi><mo stretchy="false">)</mo><mo>−</mo><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo>−</mo><mi>e</mi><mi>p</mi><mi>s</mi><mo stretchy="false">)</mo></mrow><mrow><mn>2</mn><mo>∗</mo><mi>e</mi><mi>p</mi><mi>s</mi></mrow></mfrac></mrow><annotation encoding="application/x-tex">\frac{\partial y}{\partial x} \approx \frac{f(x + eps) - f(x - eps)}{2 * eps}
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.0574em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3714em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord" style="margin-right:0.05556em;">∂</span><span class="mord mathnormal">x</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord" style="margin-right:0.05556em;">∂</span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.3074em;vertical-align:-0.8804em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.427em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∗</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal">e</span><span class="mord mathnormal">p</span><span class="mord mathnormal">s</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal">e</span><span class="mord mathnormal">p</span><span class="mord mathnormal">s</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal">e</span><span class="mord mathnormal">p</span><span class="mord mathnormal">s</span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.8804em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></div><p>This formula easily generalizes for multiple outputs (<span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>M</mi><mo>></mo><mn>1</mn></mrow><annotation encoding="application/x-tex">M \gt 1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7224em;vertical-align:-0.0391em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">M</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span></span>) by having <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mfrac><mrow><mi mathvariant="normal">∂</mi><mi>y</mi></mrow><mrow><mi mathvariant="normal">∂</mi><mi>x</mi></mrow></mfrac></mrow><annotation encoding="application/x-tex">\frac{\partial y}{\partial x}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.2772em;vertical-align:-0.345em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9322em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight" style="margin-right:0.05556em;">∂</span><span class="mord mathnormal mtight">x</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.4461em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight" style="margin-right:0.05556em;">∂</span><span class="mord mathnormal mtight" style="margin-right:0.03588em;">y</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span> be a column vector of size <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>M</mi><mo>×</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">M \times 1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">M</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span></span> like <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo>+</mo><mi>e</mi><mi>p</mi><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">f(x + eps)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">e</span><span class="mord mathnormal">p</span><span class="mord mathnormal">s</span><span class="mclose">)</span></span></span></span></span>.
In that case, the above formula can be re-used as-is and approximates the full Jacobian matrix with only two evaluations of the user function (namely <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo>+</mo><mi>e</mi><mi>p</mi><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">f(x + eps)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">e</span><span class="mord mathnormal">p</span><span class="mord mathnormal">s</span><span class="mclose">)</span></span></span></span></span> and <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo>−</mo><mi>e</mi><mi>p</mi><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">f(x - eps)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">e</span><span class="mord mathnormal">p</span><span class="mord mathnormal">s</span><span class="mclose">)</span></span></span></span></span>).</p>
<p>It is more computationally expensive to handle the case with multiple inputs (<span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>N</mi><mo>></mo><mn>1</mn></mrow><annotation encoding="application/x-tex">N \gt 1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7224em;vertical-align:-0.0391em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">N</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span></span>). In this scenario, we loop over all the inputs one after the other and apply the <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>e</mi><mi>p</mi><mi>s</mi></mrow><annotation encoding="application/x-tex">eps</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">e</span><span class="mord mathnormal">p</span><span class="mord mathnormal">s</span></span></span></span></span> perturbation for each element of <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">x</span></span></span></span></span> one after the other. This allows us to reconstruct the <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>J</mi><mi>f</mi></msub></mrow><annotation encoding="application/x-tex">J_f</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9694em;vertical-align:-0.2861em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.09618em;">J</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0962em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.10764em;">f</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span></span></span> matrix column by column.</p>
</section>
<section id="default-real-input-analytical-evaluation">
<h4>Default real input analytical evaluation<a class="headerlink" href="#default-real-input-analytical-evaluation" title="Permalink to this heading">¶</a></h4>
<p>For the analytical evaluation, we use the fact, as described above, that backward mode AD computes <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>v</mi><mi>T</mi></msup><msub><mi>J</mi><mi>f</mi></msub></mrow><annotation encoding="application/x-tex">v^T J_f</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.1274em;vertical-align:-0.2861em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span></span></span></span></span></span></span></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.09618em;">J</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0962em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.10764em;">f</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span></span></span>.
For functions with a single output, we simply use <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>v</mi><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">v = 1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">v</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span></span> to recover the full Jacobian matrix with a single backward pass.</p>
<p>For functions with more than one output, we resort to a for-loop which iterates over the outputs where each <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>v</mi></mrow><annotation encoding="application/x-tex">v</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">v</span></span></span></span></span> is a one-hot vector corresponding to each output one after the other. This allows to reconstruct the <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>J</mi><mi>f</mi></msub></mrow><annotation encoding="application/x-tex">J_f</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9694em;vertical-align:-0.2861em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.09618em;">J</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0962em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.10764em;">f</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span></span></span> matrix row by row.</p>
</section>
</section>
<section id="complex-to-real-functions">
<h3><a class="toc-backref" href="#id5" role="doc-backlink">Complex-to-real functions</a><a class="headerlink" href="#complex-to-real-functions" title="Permalink to this heading">¶</a></h3>
<p>To test a function <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>g</mi><mo>:</mo><msup><mi mathvariant="script">C</mi><mi>N</mi></msup><mo>→</mo><msup><mi mathvariant="script">R</mi><mi>M</mi></msup><mo separator="true">,</mo><mi>z</mi><mo>→</mo><mi>y</mi></mrow><annotation encoding="application/x-tex">g: \mathcal{C}^N \to \mathcal{R}^M, z \to y</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8413em;"></span><span class="mord"><span class="mord mathcal" style="margin-right:0.05834em;">C</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.10903em;">N</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">→</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.0358em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathcal">R</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.10903em;">M</span></span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.04398em;">z</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">→</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span></span></span></span> with <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>z</mi><mo>=</mo><mi>a</mi><mo>+</mo><mi>i</mi><mi>b</mi></mrow><annotation encoding="application/x-tex">z = a + i b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal" style="margin-right:0.04398em;">z</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">ib</span></span></span></span></span>, we reconstruct the (complex-valued) matrix that contains <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2</mn><mo>∗</mo><mi>C</mi><mi>W</mi></mrow><annotation encoding="application/x-tex">2 * CW</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">2</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∗</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="mord mathnormal" style="margin-right:0.13889em;">W</span></span></span></span></span>.</p>
<section id="default-complex-input-numerical-evaluation">
<h4>Default complex input numerical evaluation<a class="headerlink" href="#default-complex-input-numerical-evaluation" title="Permalink to this heading">¶</a></h4>
<p>Consider the elementary case where <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>N</mi><mo>=</mo><mi>M</mi><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">N = M = 1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">N</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">M</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span></span> first. We know from (chapter 3 of) <a class="reference external" href="https://arxiv.org/pdf/1701.00392.pdf">this research paper</a> that:</p>
<div class="math">
<span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>C</mi><mi>W</mi><mo>:</mo><mo>=</mo><mfrac><mrow><mi mathvariant="normal">∂</mi><mi>y</mi></mrow><mrow><mi mathvariant="normal">∂</mi><msup><mi>z</mi><mo>∗</mo></msup></mrow></mfrac><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>∗</mo><mo stretchy="false">(</mo><mfrac><mrow><mi mathvariant="normal">∂</mi><mi>y</mi></mrow><mrow><mi mathvariant="normal">∂</mi><mi>a</mi></mrow></mfrac><mo>+</mo><mi>i</mi><mfrac><mrow><mi mathvariant="normal">∂</mi><mi>y</mi></mrow><mrow><mi mathvariant="normal">∂</mi><mi>b</mi></mrow></mfrac><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">CW := \frac{\partial y}{\partial z^*} = \frac{1}{2} * (\frac{\partial y}{\partial a} + i \frac{\partial y}{\partial b})
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="mord mathnormal" style="margin-right:0.13889em;">W</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.0574em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3714em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord" style="margin-right:0.05556em;">∂</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.04398em;">z</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6147em;"><span style="top:-2.989em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mbin mtight">∗</span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord" style="margin-right:0.05556em;">∂</span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.0074em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∗</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:2.0574em;vertical-align:-0.686em;"></span><span class="mopen">(</span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3714em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord" style="margin-right:0.05556em;">∂</span><span class="mord mathnormal">a</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord" style="margin-right:0.05556em;">∂</span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:2.0574em;vertical-align:-0.686em;"></span><span class="mord mathnormal">i</span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3714em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord" style="margin-right:0.05556em;">∂</span><span class="mord mathnormal">b</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord" style="margin-right:0.05556em;">∂</span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mclose">)</span></span></span></span></span></div><p>Note that <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mfrac><mrow><mi mathvariant="normal">∂</mi><mi>y</mi></mrow><mrow><mi mathvariant="normal">∂</mi><mi>a</mi></mrow></mfrac></mrow><annotation encoding="application/x-tex">\frac{\partial y}{\partial a}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.2772em;vertical-align:-0.345em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9322em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight" style="margin-right:0.05556em;">∂</span><span class="mord mathnormal mtight">a</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.4461em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight" style="margin-right:0.05556em;">∂</span><span class="mord mathnormal mtight" style="margin-right:0.03588em;">y</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span> and <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mfrac><mrow><mi mathvariant="normal">∂</mi><mi>y</mi></mrow><mrow><mi mathvariant="normal">∂</mi><mi>b</mi></mrow></mfrac></mrow><annotation encoding="application/x-tex">\frac{\partial y}{\partial b}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.2772em;vertical-align:-0.345em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9322em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight" style="margin-right:0.05556em;">∂</span><span class="mord mathnormal mtight">b</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.4461em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight" style="margin-right:0.05556em;">∂</span><span class="mord mathnormal mtight" style="margin-right:0.03588em;">y</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span>, in the above equation, are <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="script">R</mi><mo>→</mo><mi mathvariant="script">R</mi></mrow><annotation encoding="application/x-tex">\mathcal{R} \to \mathcal{R}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathcal">R</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">→</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathcal">R</span></span></span></span></span> derivatives.
To evaluate these numerically, we use the method described above for the real-to-real case.
This allows us to compute the <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>C</mi><mi>W</mi></mrow><annotation encoding="application/x-tex">CW</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="mord mathnormal" style="margin-right:0.13889em;">W</span></span></span></span></span> matrix and then multiply it by <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2</mn></mrow><annotation encoding="application/x-tex">2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">2</span></span></span></span></span>.</p>
<p>Note that the code, as of time of writing, computes this value in a slightly convoluted way:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1"># Code from https://github.com/pytorch/pytorch/blob/58eb23378f2a376565a66ac32c93a316c45b6131/torch/autograd/gradcheck.py#L99-L105</span>
<span class="c1"># Notation changes in this code block:</span>
<span class="c1"># s here is y above</span>
<span class="c1"># x, y here are a, b above</span>
<span class="n">ds_dx</span> <span class="o">=</span> <span class="n">compute_gradient</span><span class="p">(</span><span class="n">eps</span><span class="p">)</span>
<span class="n">ds_dy</span> <span class="o">=</span> <span class="n">compute_gradient</span><span class="p">(</span><span class="n">eps</span> <span class="o">*</span> <span class="mi">1</span><span class="n">j</span><span class="p">)</span>
<span class="c1"># conjugate wirtinger derivative</span>
<span class="n">conj_w_d</span> <span class="o">=</span> <span class="mf">0.5</span> <span class="o">*</span> <span class="p">(</span><span class="n">ds_dx</span> <span class="o">+</span> <span class="n">ds_dy</span> <span class="o">*</span> <span class="mi">1</span><span class="n">j</span><span class="p">)</span>
<span class="c1"># wirtinger derivative</span>
<span class="n">w_d</span> <span class="o">=</span> <span class="mf">0.5</span> <span class="o">*</span> <span class="p">(</span><span class="n">ds_dx</span> <span class="o">-</span> <span class="n">ds_dy</span> <span class="o">*</span> <span class="mi">1</span><span class="n">j</span><span class="p">)</span>
<span class="n">d</span><span class="p">[</span><span class="n">d_idx</span><span class="p">]</span> <span class="o">=</span> <span class="n">grad_out</span><span class="o">.</span><span class="n">conjugate</span><span class="p">()</span> <span class="o">*</span> <span class="n">conj_w_d</span> <span class="o">+</span> <span class="n">grad_out</span> <span class="o">*</span> <span class="n">w_d</span><span class="o">.</span><span class="n">conj</span><span class="p">()</span>
<span class="c1"># Since grad_out is always 1, and W and CW are complex conjugate of each other, the last line ends up computing exactly `conj_w_d + w_d.conj() = conj_w_d + conj_w_d = 2 * conj_w_d`.</span>
</pre></div>
</div>
</section>
<section id="default-complex-input-analytical-evaluation">
<h4>Default complex input analytical evaluation<a class="headerlink" href="#default-complex-input-analytical-evaluation" title="Permalink to this heading">¶</a></h4>
<p>Since backward mode AD computes exactly twice the <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>C</mi><mi>W</mi></mrow><annotation encoding="application/x-tex">CW</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="mord mathnormal" style="margin-right:0.13889em;">W</span></span></span></span></span> derivative already, we simply use the same trick as for the real-to-real case here and reconstruct the matrix row by row when there are multiple real outputs.</p>
</section>
</section>
<section id="functions-with-complex-outputs">
<h3><a class="toc-backref" href="#id6" role="doc-backlink">Functions with complex outputs</a><a class="headerlink" href="#functions-with-complex-outputs" title="Permalink to this heading">¶</a></h3>
<p>In this case, the user-provided function does not follow the assumption from the autograd that the function we compute backward AD for is real-valued.
This means that using autograd directly on this function is not well defined.
To solve this, we will replace the test of the function <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>h</mi><mo>:</mo><msup><mi mathvariant="script">P</mi><mi>N</mi></msup><mo>→</mo><msup><mi mathvariant="script">C</mi><mi>M</mi></msup></mrow><annotation encoding="application/x-tex">h: \mathcal{P}^N \to \mathcal{C}^M</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">h</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8413em;"></span><span class="mord"><span class="mord mathcal" style="margin-right:0.08222em;">P</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.10903em;">N</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">→</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8413em;"></span><span class="mord"><span class="mord mathcal" style="margin-right:0.05834em;">C</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.10903em;">M</span></span></span></span></span></span></span></span></span></span></span></span> (where <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="script">P</mi></mrow><annotation encoding="application/x-tex">\mathcal{P}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathcal" style="margin-right:0.08222em;">P</span></span></span></span></span> can be either <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="script">R</mi></mrow><annotation encoding="application/x-tex">\mathcal{R}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathcal">R</span></span></span></span></span> or <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="script">C</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathcal" style="margin-right:0.05834em;">C</span></span></span></span></span>), with two functions: <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>h</mi><mi>r</mi></mrow><annotation encoding="application/x-tex">hr</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">h</span><span class="mord mathnormal" style="margin-right:0.02778em;">r</span></span></span></span></span> and <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>h</mi><mi>i</mi></mrow><annotation encoding="application/x-tex">hi</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">hi</span></span></span></span></span> such that:</p>
<div class="math">
<span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>h</mi><mi>r</mi><mo stretchy="false">(</mo><mi>q</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>:</mo><mo>=</mo><mi>r</mi><mi>e</mi><mi>a</mi><mi>l</mi><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">(</mo><mi>q</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>h</mi><mi>i</mi><mo stretchy="false">(</mo><mi>q</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>:</mo><mo>=</mo><mi>i</mi><mi>m</mi><mi>a</mi><mi>g</mi><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">(</mo><mi>q</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{aligned}
hr(q) &:= real(f(q)) \\
hi(q) &:= imag(f(q))
\end{aligned}
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:3em;vertical-align:-1.25em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.75em;"><span style="top:-3.91em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">h</span><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.03588em;">q</span><span class="mclose">)</span></span></span><span style="top:-2.41em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">hi</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.03588em;">q</span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.25em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.75em;"><span style="top:-3.91em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal">re</span><span class="mord mathnormal">a</span><span class="mord mathnormal" style="margin-right:0.01968em;">l</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.03588em;">q</span><span class="mclose">))</span></span></span><span style="top:-2.41em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal">ima</span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.03588em;">q</span><span class="mclose">))</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.25em;"><span></span></span></span></span></span></span></span></span></span></span></span></div><p>where <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>q</mi><mo>∈</mo><mi mathvariant="script">P</mi></mrow><annotation encoding="application/x-tex">q \in \mathcal{P}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7335em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">q</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathcal" style="margin-right:0.08222em;">P</span></span></span></span></span>.
We then do a basic gradcheck for both <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>h</mi><mi>r</mi></mrow><annotation encoding="application/x-tex">hr</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">h</span><span class="mord mathnormal" style="margin-right:0.02778em;">r</span></span></span></span></span> and <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>h</mi><mi>i</mi></mrow><annotation encoding="application/x-tex">hi</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">hi</span></span></span></span></span> using either the real-to-real or complex-to-real case described above, depending on <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="script">P</mi></mrow><annotation encoding="application/x-tex">\mathcal{P}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathcal" style="margin-right:0.08222em;">P</span></span></span></span></span>.</p>
<p>Note that, the code, as of time of writing, does not create these functions explicitly but perform the chain rule with the <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>r</mi><mi>e</mi><mi>a</mi><mi>l</mi></mrow><annotation encoding="application/x-tex">real</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">re</span><span class="mord mathnormal">a</span><span class="mord mathnormal" style="margin-right:0.01968em;">l</span></span></span></span></span> or <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>i</mi><mi>m</mi><mi>a</mi><mi>g</mi></mrow><annotation encoding="application/x-tex">imag</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.854em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">ima</span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span></span></span></span></span> functions manually by passing the <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mtext>grad_out</mtext></mrow><annotation encoding="application/x-tex">\text{grad\_out}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0044em;vertical-align:-0.31em;"></span><span class="mord text"><span class="mord">grad_out</span></span></span></span></span></span> arguments to the different functions.
When <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mtext>grad_out</mtext><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">\text{grad\_out} = 1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0044em;vertical-align:-0.31em;"></span><span class="mord text"><span class="mord">grad_out</span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span></span>, then we are considering <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>h</mi><mi>r</mi></mrow><annotation encoding="application/x-tex">hr</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">h</span><span class="mord mathnormal" style="margin-right:0.02778em;">r</span></span></span></span></span>.
When <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mtext>grad_out</mtext><mo>=</mo><mn>1</mn><mi>j</mi></mrow><annotation encoding="application/x-tex">\text{grad\_out} = 1j</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0044em;vertical-align:-0.31em;"></span><span class="mord text"><span class="mord">grad_out</span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.854em;vertical-align:-0.1944em;"></span><span class="mord">1</span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span></span></span></span></span>, then we are considering <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>h</mi><mi>i</mi></mrow><annotation encoding="application/x-tex">hi</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">hi</span></span></span></span></span>.</p>
</section>
</section>
<section id="fast-backward-mode-gradcheck">
<h2><a class="toc-backref" href="#id7" role="doc-backlink">Fast backward mode gradcheck</a><a class="headerlink" href="#fast-backward-mode-gradcheck" title="Permalink to this heading">¶</a></h2>
<p>While the above formulation of gradcheck is great, both, to ensure correctness and debuggability, it is very slow because it reconstructs the full Jacobian matrices.
This section presents a way to perform gradcheck in a faster way without affecting its correctness.
The debuggability can be recovered by adding special logic when we detect an error. In that case, we can run the default version that reconstructs the full matrix to give full details to the user.</p>
<p>The high level strategy here is to find a scalar quantity that can be computed efficiently by both the numerical and analytical methods and that represents the full matrix computed by the slow gradcheck well enough to ensure that it will catch any discrepancy in the Jacobians.</p>
<section id="fast-gradcheck-for-real-to-real-functions">
<h3><a class="toc-backref" href="#id8" role="doc-backlink">Fast gradcheck for real-to-real functions</a><a class="headerlink" href="#fast-gradcheck-for-real-to-real-functions" title="Permalink to this heading">¶</a></h3>
<p>The scalar quantity that we want to compute here is <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>v</mi><mi>T</mi></msup><msub><mi>J</mi><mi>f</mi></msub><mi>u</mi></mrow><annotation encoding="application/x-tex">v^T J_f u</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.1274em;vertical-align:-0.2861em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span></span></span></span></span></span></span></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.09618em;">J</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0962em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.10764em;">f</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mord mathnormal">u</span></span></span></span></span> for a given random vector <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>v</mi><mo>∈</mo><msup><mi mathvariant="script">R</mi><mi>M</mi></msup></mrow><annotation encoding="application/x-tex">v \in \mathcal{R}^M</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">v</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8413em;"></span><span class="mord"><span class="mord mathcal">R</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.10903em;">M</span></span></span></span></span></span></span></span></span></span></span></span> and a random unit norm vector <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>u</mi><mo>∈</mo><msup><mi mathvariant="script">R</mi><mi>N</mi></msup></mrow><annotation encoding="application/x-tex">u \in \mathcal{R}^N</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">u</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8413em;"></span><span class="mord"><span class="mord mathcal">R</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.10903em;">N</span></span></span></span></span></span></span></span></span></span></span></span>.</p>
<p>For the numerical evaluation, we can efficiently compute</p>
<div class="math">
<span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mi>J</mi><mi>f</mi></msub><mi>u</mi><mo>≈</mo><mfrac><mrow><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo>+</mo><mi>u</mi><mo>∗</mo><mi>e</mi><mi>p</mi><mi>s</mi><mo stretchy="false">)</mo><mo>−</mo><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo>−</mo><mi>u</mi><mo>∗</mo><mi>e</mi><mi>p</mi><mi>s</mi><mo stretchy="false">)</mo></mrow><mrow><mn>2</mn><mo>∗</mo><mi>e</mi><mi>p</mi><mi>s</mi></mrow></mfrac><mi mathvariant="normal">.</mi></mrow><annotation encoding="application/x-tex">J_f u \approx \frac{f(x + u * eps) - f(x - u * eps)}{2 * eps}.
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9694em;vertical-align:-0.2861em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.09618em;">J</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0962em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.10764em;">f</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mord mathnormal">u</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.3074em;vertical-align:-0.8804em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.427em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∗</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal">e</span><span class="mord mathnormal">p</span><span class="mord mathnormal">s</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal">u</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∗</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal">e</span><span class="mord mathnormal">p</span><span class="mord mathnormal">s</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal">u</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∗</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal">e</span><span class="mord mathnormal">p</span><span class="mord mathnormal">s</span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.8804em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord">.</span></span></span></span></span></div><p>We then perform the dot product between this vector and <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>v</mi></mrow><annotation encoding="application/x-tex">v</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">v</span></span></span></span></span> to get the scalar value of interest.</p>
<p>For the analytical version, we can use backward mode AD to compute <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>v</mi><mi>T</mi></msup><msub><mi>J</mi><mi>f</mi></msub></mrow><annotation encoding="application/x-tex">v^T J_f</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.1274em;vertical-align:-0.2861em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span></span></span></span></span></span></span></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.09618em;">J</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0962em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.10764em;">f</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span></span></span> directly. We then perform the dot product with <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>u</mi></mrow><annotation encoding="application/x-tex">u</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">u</span></span></span></span></span> to get the expected value.</p>
</section>
<section id="fast-gradcheck-for-complex-to-real-functions">
<h3><a class="toc-backref" href="#id9" role="doc-backlink">Fast gradcheck for complex-to-real functions</a><a class="headerlink" href="#fast-gradcheck-for-complex-to-real-functions" title="Permalink to this heading">¶</a></h3>
<p>Similar to the real-to-real case, we want to perform a reduction of the full matrix. But the <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2</mn><mo>∗</mo><mi>C</mi><mi>W</mi></mrow><annotation encoding="application/x-tex">2 * CW</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">2</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∗</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="mord mathnormal" style="margin-right:0.13889em;">W</span></span></span></span></span> matrix is complex-valued and so in this case, we will compare to complex scalars.</p>
<p>Due to some constraints on what we can compute efficiently in the numerical case and to keep the number of numerical evaluations to a minimum, we compute the following (albeit surprising) scalar value:</p>
<div class="math">
<span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>s</mi><mo>:</mo><mo>=</mo><mn>2</mn><mo>∗</mo><msup><mi>v</mi><mi>T</mi></msup><mo stretchy="false">(</mo><mi>r</mi><mi>e</mi><mi>a</mi><mi>l</mi><mo stretchy="false">(</mo><mi>C</mi><mi>W</mi><mo stretchy="false">)</mo><mi>u</mi><mi>r</mi><mo>+</mo><mi>i</mi><mo>∗</mo><mi>i</mi><mi>m</mi><mi>a</mi><mi>g</mi><mo stretchy="false">(</mo><mi>C</mi><mi>W</mi><mo stretchy="false">)</mo><mi>u</mi><mi>i</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">s := 2 * v^T (real(CW) ur + i * imag(CW) ui)
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">s</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">2</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∗</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.1413em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8913em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">re</span><span class="mord mathnormal">a</span><span class="mord mathnormal" style="margin-right:0.01968em;">l</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="mord mathnormal" style="margin-right:0.13889em;">W</span><span class="mclose">)</span><span class="mord mathnormal">u</span><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6595em;"></span><span class="mord mathnormal">i</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∗</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">ima</span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="mord mathnormal" style="margin-right:0.13889em;">W</span><span class="mclose">)</span><span class="mord mathnormal">u</span><span class="mord mathnormal">i</span><span class="mclose">)</span></span></span></span></span></div><p>where <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>v</mi><mo>∈</mo><msup><mi mathvariant="script">R</mi><mi>M</mi></msup></mrow><annotation encoding="application/x-tex">v \in \mathcal{R}^M</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">v</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8413em;"></span><span class="mord"><span class="mord mathcal">R</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.10903em;">M</span></span></span></span></span></span></span></span></span></span></span></span>, <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>u</mi><mi>r</mi><mo>∈</mo><msup><mi mathvariant="script">R</mi><mi>N</mi></msup></mrow><annotation encoding="application/x-tex">ur \in \mathcal{R}^N</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">u</span><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8413em;"></span><span class="mord"><span class="mord mathcal">R</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.10903em;">N</span></span></span></span></span></span></span></span></span></span></span></span> and <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>u</mi><mi>i</mi><mo>∈</mo><msup><mi mathvariant="script">R</mi><mi>N</mi></msup></mrow><annotation encoding="application/x-tex">ui \in \mathcal{R}^N</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6986em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">u</span><span class="mord mathnormal">i</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8413em;"></span><span class="mord"><span class="mord mathcal">R</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.10903em;">N</span></span></span></span></span></span></span></span></span></span></span></span>.</p>
<section id="fast-complex-input-numerical-evaluation">
<h4>Fast complex input numerical evaluation<a class="headerlink" href="#fast-complex-input-numerical-evaluation" title="Permalink to this heading">¶</a></h4>
<p>We first consider how to compute <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>s</mi></mrow><annotation encoding="application/x-tex">s</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">s</span></span></span></span></span> with a numerical method. To do so, keeping in mind that we’re considering <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>g</mi><mo>:</mo><msup><mi mathvariant="script">C</mi><mi>N</mi></msup><mo>→</mo><msup><mi mathvariant="script">R</mi><mi>M</mi></msup><mo separator="true">,</mo><mi>z</mi><mo>→</mo><mi>y</mi></mrow><annotation encoding="application/x-tex">g: \mathcal{C}^N \to \mathcal{R}^M, z \to y</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8413em;"></span><span class="mord"><span class="mord mathcal" style="margin-right:0.05834em;">C</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.10903em;">N</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">→</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.0358em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathcal">R</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.10903em;">M</span></span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.04398em;">z</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">→</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span></span></span></span> with <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>z</mi><mo>=</mo><mi>a</mi><mo>+</mo><mi>i</mi><mi>b</mi></mrow><annotation encoding="application/x-tex">z = a + i b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal" style="margin-right:0.04398em;">z</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">ib</span></span></span></span></span>, and that <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>C</mi><mi>W</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>∗</mo><mo stretchy="false">(</mo><mfrac><mrow><mi mathvariant="normal">∂</mi><mi>y</mi></mrow><mrow><mi mathvariant="normal">∂</mi><mi>a</mi></mrow></mfrac><mo>+</mo><mi>i</mi><mfrac><mrow><mi mathvariant="normal">∂</mi><mi>y</mi></mrow><mrow><mi mathvariant="normal">∂</mi><mi>b</mi></mrow></mfrac><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">CW = \frac{1}{2} * (\frac{\partial y}{\partial a} + i \frac{\partial y}{\partial b})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="mord mathnormal" style="margin-right:0.13889em;">W</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.1901em;vertical-align:-0.345em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8451em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∗</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.2772em;vertical-align:-0.345em;"></span><span class="mopen">(</span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9322em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight" style="margin-right:0.05556em;">∂</span><span class="mord mathnormal mtight">a</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.4461em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight" style="margin-right:0.05556em;">∂</span><span class="mord mathnormal mtight" style="margin-right:0.03588em;">y</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.2772em;vertical-align:-0.345em;"></span><span class="mord mathnormal">i</span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9322em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight" style="margin-right:0.05556em;">∂</span><span class="mord mathnormal mtight">b</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.4461em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight" style="margin-right:0.05556em;">∂</span><span class="mord mathnormal mtight" style="margin-right:0.03588em;">y</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mclose">)</span></span></span></span></span>, we rewrite it as follows:</p>
<div class="math">
<span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mi>s</mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mn>2</mn><mo>∗</mo><msup><mi>v</mi><mi>T</mi></msup><mo stretchy="false">(</mo><mi>r</mi><mi>e</mi><mi>a</mi><mi>l</mi><mo stretchy="false">(</mo><mi>C</mi><mi>W</mi><mo stretchy="false">)</mo><mi>u</mi><mi>r</mi><mo>+</mo><mi>i</mi><mo>∗</mo><mi>i</mi><mi>m</mi><mi>a</mi><mi>g</mi><mo stretchy="false">(</mo><mi>C</mi><mi>W</mi><mo stretchy="false">)</mo><mi>u</mi><mi>i</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mn>2</mn><mo>∗</mo><msup><mi>v</mi><mi>T</mi></msup><mo stretchy="false">(</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>∗</mo><mfrac><mrow><mi mathvariant="normal">∂</mi><mi>y</mi></mrow><mrow><mi mathvariant="normal">∂</mi><mi>a</mi></mrow></mfrac><mi>u</mi><mi>r</mi><mo>+</mo><mi>i</mi><mo>∗</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>∗</mo><mfrac><mrow><mi mathvariant="normal">∂</mi><mi>y</mi></mrow><mrow><mi mathvariant="normal">∂</mi><mi>b</mi></mrow></mfrac><mi>u</mi><mi>i</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><msup><mi>v</mi><mi>T</mi></msup><mo stretchy="false">(</mo><mfrac><mrow><mi mathvariant="normal">∂</mi><mi>y</mi></mrow><mrow><mi mathvariant="normal">∂</mi><mi>a</mi></mrow></mfrac><mi>u</mi><mi>r</mi><mo>+</mo><mi>i</mi><mo>∗</mo><mfrac><mrow><mi mathvariant="normal">∂</mi><mi>y</mi></mrow><mrow><mi mathvariant="normal">∂</mi><mi>b</mi></mrow></mfrac><mi>u</mi><mi>i</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><msup><mi>v</mi><mi>T</mi></msup><mo stretchy="false">(</mo><mo stretchy="false">(</mo><mfrac><mrow><mi mathvariant="normal">∂</mi><mi>y</mi></mrow><mrow><mi mathvariant="normal">∂</mi><mi>a</mi></mrow></mfrac><mi>u</mi><mi>r</mi><mo stretchy="false">)</mo><mo>+</mo><mi>i</mi><mo>∗</mo><mo stretchy="false">(</mo><mfrac><mrow><mi mathvariant="normal">∂</mi><mi>y</mi></mrow><mrow><mi mathvariant="normal">∂</mi><mi>b</mi></mrow></mfrac><mi>u</mi><mi>i</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{aligned}
s &= 2 * v^T (real(CW) ur + i * imag(CW) ui) \\
&= 2 * v^T (\frac{1}{2} * \frac{\partial y}{\partial a} ur + i * \frac{1}{2} * \frac{\partial y}{\partial b} ui) \\
&= v^T (\frac{\partial y}{\partial a} ur + i * \frac{\partial y}{\partial b} ui) \\
&= v^T ((\frac{\partial y}{\partial a} ur) + i * (\frac{\partial y}{\partial b} ui))
\end{aligned}
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:8.6237em;vertical-align:-4.0618em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:4.5618em;"><span style="top:-7.0419em;"><span class="pstrut" style="height:3.3714em;"></span><span class="mord"><span class="mord mathnormal">s</span></span></span><span style="top:-5.0105em;"><span class="pstrut" style="height:3.3714em;"></span><span class="mord"></span></span><span style="top:-2.6531em;"><span class="pstrut" style="height:3.3714em;"></span><span class="mord"></span></span><span style="top:-0.2956em;"><span class="pstrut" style="height:3.3714em;"></span><span class="mord"></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:4.0618em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:4.5618em;"><span style="top:-7.0419em;"><span class="pstrut" style="height:3.3714em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">2</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∗</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8913em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">re</span><span class="mord mathnormal">a</span><span class="mord mathnormal" style="margin-right:0.01968em;">l</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="mord mathnormal" style="margin-right:0.13889em;">W</span><span class="mclose">)</span><span class="mord mathnormal">u</span><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal">i</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∗</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal">ima</span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="mord mathnormal" style="margin-right:0.13889em;">W</span><span class="mclose">)</span><span class="mord mathnormal">u</span><span class="mord mathnormal">i</span><span class="mclose">)</span></span></span><span style="top:-5.0105em;"><span class="pstrut" style="height:3.3714em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">2</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∗</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8913em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∗</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3714em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord" style="margin-right:0.05556em;">∂</span><span class="mord mathnormal">a</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord" style="margin-right:0.05556em;">∂</span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord mathnormal">u</span><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal">i</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∗</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∗</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3714em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord" style="margin-right:0.05556em;">∂</span><span class="mord mathnormal">b</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord" style="margin-right:0.05556em;">∂</span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord mathnormal">u</span><span class="mord mathnormal">i</span><span class="mclose">)</span></span></span><span style="top:-2.6531em;"><span class="pstrut" style="height:3.3714em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8913em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3714em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord" style="margin-right:0.05556em;">∂</span><span class="mord mathnormal">a</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord" style="margin-right:0.05556em;">∂</span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord mathnormal">u</span><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal">i</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∗</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3714em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord" style="margin-right:0.05556em;">∂</span><span class="mord mathnormal">b</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord" style="margin-right:0.05556em;">∂</span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord mathnormal">u</span><span class="mord mathnormal">i</span><span class="mclose">)</span></span></span><span style="top:-0.2956em;"><span class="pstrut" style="height:3.3714em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8913em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span></span></span></span></span></span></span></span><span class="mopen">((</span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3714em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord" style="margin-right:0.05556em;">∂</span><span class="mord mathnormal">a</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord" style="margin-right:0.05556em;">∂</span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord mathnormal">u</span><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal">i</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∗</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mopen">(</span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3714em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord" style="margin-right:0.05556em;">∂</span><span class="mord mathnormal">b</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord" style="margin-right:0.05556em;">∂</span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord mathnormal">u</span><span class="mord mathnormal">i</span><span class="mclose">))</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:4.0618em;"><span></span></span></span></span></span></span></span></span></span></span></span></div><p>In this formula, we can see that <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mfrac><mrow><mi mathvariant="normal">∂</mi><mi>y</mi></mrow><mrow><mi mathvariant="normal">∂</mi><mi>a</mi></mrow></mfrac><mi>u</mi><mi>r</mi></mrow><annotation encoding="application/x-tex">\frac{\partial y}{\partial a} ur</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.2772em;vertical-align:-0.345em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9322em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight" style="margin-right:0.05556em;">∂</span><span class="mord mathnormal mtight">a</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.4461em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight" style="margin-right:0.05556em;">∂</span><span class="mord mathnormal mtight" style="margin-right:0.03588em;">y</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord mathnormal">u</span><span class="mord mathnormal" style="margin-right:0.02778em;">r</span></span></span></span></span> and <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mfrac><mrow><mi mathvariant="normal">∂</mi><mi>y</mi></mrow><mrow><mi mathvariant="normal">∂</mi><mi>b</mi></mrow></mfrac><mi>u</mi><mi>i</mi></mrow><annotation encoding="application/x-tex">\frac{\partial y}{\partial b} ui</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.2772em;vertical-align:-0.345em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9322em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight" style="margin-right:0.05556em;">∂</span><span class="mord mathnormal mtight">b</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.4461em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight" style="margin-right:0.05556em;">∂</span><span class="mord mathnormal mtight" style="margin-right:0.03588em;">y</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord mathnormal">u</span><span class="mord mathnormal">i</span></span></span></span></span> can be evaluated the same way as the fast version for the real-to-real case.
Once these real-valued quantities have been computed, we can reconstruct the complex vector on the right side and do a dot product with the real-valued <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>v</mi></mrow><annotation encoding="application/x-tex">v</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">v</span></span></span></span></span> vector.</p>
</section>
<section id="fast-complex-input-analytical-evaluation">
<h4>Fast complex input analytical evaluation<a class="headerlink" href="#fast-complex-input-analytical-evaluation" title="Permalink to this heading">¶</a></h4>
<p>For the analytical case, things are simpler and we rewrite the formula as:</p>
<div class="math">
<span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mi>s</mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mn>2</mn><mo>∗</mo><msup><mi>v</mi><mi>T</mi></msup><mo stretchy="false">(</mo><mi>r</mi><mi>e</mi><mi>a</mi><mi>l</mi><mo stretchy="false">(</mo><mi>C</mi><mi>W</mi><mo stretchy="false">)</mo><mi>u</mi><mi>r</mi><mo>+</mo><mi>i</mi><mo>∗</mo><mi>i</mi><mi>m</mi><mi>a</mi><mi>g</mi><mo stretchy="false">(</mo><mi>C</mi><mi>W</mi><mo stretchy="false">)</mo><mi>u</mi><mi>i</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><msup><mi>v</mi><mi>T</mi></msup><mi>r</mi><mi>e</mi><mi>a</mi><mi>l</mi><mo stretchy="false">(</mo><mn>2</mn><mo>∗</mo><mi>C</mi><mi>W</mi><mo stretchy="false">)</mo><mi>u</mi><mi>r</mi><mo>+</mo><mi>i</mi><mo>∗</mo><msup><mi>v</mi><mi>T</mi></msup><mi>i</mi><mi>m</mi><mi>a</mi><mi>g</mi><mo stretchy="false">(</mo><mn>2</mn><mo>∗</mo><mi>C</mi><mi>W</mi><mo stretchy="false">)</mo><mi>u</mi><mi>i</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mi>r</mi><mi>e</mi><mi>a</mi><mi>l</mi><mo stretchy="false">(</mo><msup><mi>v</mi><mi>T</mi></msup><mo stretchy="false">(</mo><mn>2</mn><mo>∗</mo><mi>C</mi><mi>W</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mi>u</mi><mi>r</mi><mo>+</mo><mi>i</mi><mo>∗</mo><mi>i</mi><mi>m</mi><mi>a</mi><mi>g</mi><mo stretchy="false">(</mo><msup><mi>v</mi><mi>T</mi></msup><mo stretchy="false">(</mo><mn>2</mn><mo>∗</mo><mi>C</mi><mi>W</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mi>u</mi><mi>i</mi></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{aligned}
s &= 2 * v^T (real(CW) ur + i * imag(CW) ui) \\
&= v^T real(2 * CW) ur + i * v^T imag(2 * CW) ui) \\
&= real(v^T (2 * CW)) ur + i * imag(v^T (2 * CW)) ui
\end{aligned}
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:4.654em;vertical-align:-2.077em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.577em;"><span style="top:-4.6857em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">s</span></span></span><span style="top:-3.1343em;"><span class="pstrut" style="height:3em;"></span><span class="mord"></span></span><span style="top:-1.583em;"><span class="pstrut" style="height:3em;"></span><span class="mord"></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.077em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.577em;"><span style="top:-4.6857em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">2</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∗</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8913em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">re</span><span class="mord mathnormal">a</span><span class="mord mathnormal" style="margin-right:0.01968em;">l</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="mord mathnormal" style="margin-right:0.13889em;">W</span><span class="mclose">)</span><span class="mord mathnormal">u</span><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal">i</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∗</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal">ima</span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="mord mathnormal" style="margin-right:0.13889em;">W</span><span class="mclose">)</span><span class="mord mathnormal">u</span><span class="mord mathnormal">i</span><span class="mclose">)</span></span></span><span style="top:-3.1343em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8913em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span></span></span></span></span></span></span></span><span class="mord mathnormal">re</span><span class="mord mathnormal">a</span><span class="mord mathnormal" style="margin-right:0.01968em;">l</span><span class="mopen">(</span><span class="mord">2</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∗</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="mord mathnormal" style="margin-right:0.13889em;">W</span><span class="mclose">)</span><span class="mord mathnormal">u</span><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal">i</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∗</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8913em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span></span></span></span></span></span></span></span><span class="mord mathnormal">ima</span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mord">2</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∗</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="mord mathnormal" style="margin-right:0.13889em;">W</span><span class="mclose">)</span><span class="mord mathnormal">u</span><span class="mord mathnormal">i</span><span class="mclose">)</span></span></span><span style="top:-1.583em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal">re</span><span class="mord mathnormal">a</span><span class="mord mathnormal" style="margin-right:0.01968em;">l</span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8913em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord">2</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∗</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="mord mathnormal" style="margin-right:0.13889em;">W</span><span class="mclose">))</span><span class="mord mathnormal">u</span><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal">i</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∗</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal">ima</span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8913em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord">2</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∗</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="mord mathnormal" style="margin-right:0.13889em;">W</span><span class="mclose">))</span><span class="mord mathnormal">u</span><span class="mord mathnormal">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.077em;"><span></span></span></span></span></span></span></span></span></span></span></span></div><p>We can thus use the fact that the backward mode AD provides us with an efficient way to compute <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>v</mi><mi>T</mi></msup><mo stretchy="false">(</mo><mn>2</mn><mo>∗</mo><mi>C</mi><mi>W</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">v^T (2 * CW)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0913em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord">2</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∗</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="mord mathnormal" style="margin-right:0.13889em;">W</span><span class="mclose">)</span></span></span></span></span> and then perform a dot product of the real part with <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>u</mi><mi>r</mi></mrow><annotation encoding="application/x-tex">ur</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">u</span><span class="mord mathnormal" style="margin-right:0.02778em;">r</span></span></span></span></span> and the imaginary part with <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>u</mi><mi>i</mi></mrow><annotation encoding="application/x-tex">ui</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6595em;"></span><span class="mord mathnormal">u</span><span class="mord mathnormal">i</span></span></span></span></span> before reconstructing the final complex scalar <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>s</mi></mrow><annotation encoding="application/x-tex">s</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">s</span></span></span></span></span>.</p>
</section>
<section id="why-not-use-a-complex-u">
<h4>Why not use a complex <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>u</mi></mrow><annotation encoding="application/x-tex">u</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">u</span></span></span></span></span><a class="headerlink" href="#why-not-use-a-complex-u" title="Permalink to this heading">¶</a></h4>
<p>At this point, you might be wondering why we did not select a complex <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>u</mi></mrow><annotation encoding="application/x-tex">u</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">u</span></span></span></span></span> and just performed the reduction <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2</mn><mo>∗</mo><msup><mi>v</mi><mi>T</mi></msup><mi>C</mi><mi>W</mi><msup><mi>u</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup></mrow><annotation encoding="application/x-tex">2 * v^T CW u'</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">2</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∗</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8413em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span></span></span></span></span></span></span></span><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="mord mathnormal" style="margin-right:0.13889em;">W</span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7519em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span></span></span></span></span>.
To dive into this, in this paragraph, we will use the complex version of <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>u</mi></mrow><annotation encoding="application/x-tex">u</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">u</span></span></span></span></span> noted <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>u</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo>=</mo><mi>u</mi><msup><mi>r</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo>+</mo><mi>i</mi><mi>u</mi><msup><mi>i</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup></mrow><annotation encoding="application/x-tex">u' = ur' + i ui'</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7519em;"></span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7519em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8352em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">u</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7519em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.7519em;"></span><span class="mord mathnormal">i</span><span class="mord mathnormal">u</span><span class="mord"><span class="mord mathnormal">i</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7519em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span></span></span></span></span>.
Using such complex <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>u</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup></mrow><annotation encoding="application/x-tex">u'</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7519em;"></span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7519em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span></span></span></span></span>, the problem is that when doing the numerical evaluation, we would need to compute:</p>
<div class="math">
<span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mn>2</mn><mo>∗</mo><mi>C</mi><mi>W</mi><msup><mi>u</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mo stretchy="false">(</mo><mfrac><mrow><mi mathvariant="normal">∂</mi><mi>y</mi></mrow><mrow><mi mathvariant="normal">∂</mi><mi>a</mi></mrow></mfrac><mo>+</mo><mi>i</mi><mfrac><mrow><mi mathvariant="normal">∂</mi><mi>y</mi></mrow><mrow><mi mathvariant="normal">∂</mi><mi>b</mi></mrow></mfrac><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>u</mi><msup><mi>r</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo>+</mo><mi>i</mi><mi>u</mi><msup><mi>i</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mfrac><mrow><mi mathvariant="normal">∂</mi><mi>y</mi></mrow><mrow><mi mathvariant="normal">∂</mi><mi>a</mi></mrow></mfrac><mi>u</mi><msup><mi>r</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo>+</mo><mi>i</mi><mfrac><mrow><mi mathvariant="normal">∂</mi><mi>y</mi></mrow><mrow><mi mathvariant="normal">∂</mi><mi>a</mi></mrow></mfrac><mi>u</mi><msup><mi>i</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo>+</mo><mi>i</mi><mfrac><mrow><mi mathvariant="normal">∂</mi><mi>y</mi></mrow><mrow><mi mathvariant="normal">∂</mi><mi>b</mi></mrow></mfrac><mi>u</mi><msup><mi>r</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo>−</mo><mfrac><mrow><mi mathvariant="normal">∂</mi><mi>y</mi></mrow><mrow><mi mathvariant="normal">∂</mi><mi>b</mi></mrow></mfrac><mi>u</mi><msup><mi>i</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{aligned}
2*CW u' &= (\frac{\partial y}{\partial a} + i \frac{\partial y}{\partial b})(ur' + i ui') \\
&= \frac{\partial y}{\partial a} ur' + i \frac{\partial y}{\partial a} ui' + i \frac{\partial y}{\partial b} ur' - \frac{\partial y}{\partial b} ui'
\end{aligned}
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:4.7149em;vertical-align:-2.1074em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.6074em;"><span style="top:-4.6074em;"><span class="pstrut" style="height:3.3714em;"></span><span class="mord"><span class="mord">2</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∗</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="mord mathnormal" style="margin-right:0.13889em;">W</span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8019em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span></span></span><span style="top:-2.25em;"><span class="pstrut" style="height:3.3714em;"></span><span class="mord"></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.1074em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.6074em;"><span style="top:-4.6074em;"><span class="pstrut" style="height:3.3714em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mopen">(</span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3714em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord" style="margin-right:0.05556em;">∂</span><span class="mord mathnormal">a</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord" style="margin-right:0.05556em;">∂</span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal">i</span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3714em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord" style="margin-right:0.05556em;">∂</span><span class="mord mathnormal">b</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord" style="margin-right:0.05556em;">∂</span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mclose">)</span><span class="mopen">(</span><span class="mord mathnormal">u</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8019em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal">i</span><span class="mord mathnormal">u</span><span class="mord"><span class="mord mathnormal">i</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8019em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mclose">)</span></span></span><span style="top:-2.25em;"><span class="pstrut" style="height:3.3714em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3714em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord" style="margin-right:0.05556em;">∂</span><span class="mord mathnormal">a</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord" style="margin-right:0.05556em;">∂</span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord mathnormal">u</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8019em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal">i</span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3714em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord" style="margin-right:0.05556em;">∂</span><span class="mord mathnormal">a</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord" style="margin-right:0.05556em;">∂</span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord mathnormal">u</span><span class="mord"><span class="mord mathnormal">i</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8019em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal">i</span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3714em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord" style="margin-right:0.05556em;">∂</span><span class="mord mathnormal">b</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord" style="margin-right:0.05556em;">∂</span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord mathnormal">u</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8019em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3714em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord" style="margin-right:0.05556em;">∂</span><span class="mord mathnormal">b</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord" style="margin-right:0.05556em;">∂</span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord mathnormal">u</span><span class="mord"><span class="mord mathnormal">i</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8019em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.1074em;"><span></span></span></span></span></span></span></span></span></span></span></span></div><p>Which would require four evaluations of real-to-real finite difference (twice as much compared to the approached proposed above).
Since this approach does not have more degrees of freedom (same number of real valued variables) and we try to get the fastest possible evaluation here, we use the other formulation above.</p>
</section>
</section>
<section id="fast-gradcheck-for-functions-with-complex-outputs">
<h3><a class="toc-backref" href="#id10" role="doc-backlink">Fast gradcheck for functions with complex outputs</a><a class="headerlink" href="#fast-gradcheck-for-functions-with-complex-outputs" title="Permalink to this heading">¶</a></h3>
<p>Just like in the slow case, we consider two real-valued functions and use the appropriate rule from above for each function.</p>
</section>
</section>
<section id="gradgradcheck-implementation">
<h2><a class="toc-backref" href="#id11" role="doc-backlink">Gradgradcheck implementation</a><a class="headerlink" href="#gradgradcheck-implementation" title="Permalink to this heading">¶</a></h2>
<p>PyTorch also provide a utility to verify second order gradients. The goal here is to make sure that the backward implementation is also properly differentiable and computes the right thing.</p>
<p>This feature is implemented by considering the function <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>F</mi><mo>:</mo><mi>x</mi><mo separator="true">,</mo><mi>v</mi><mo>→</mo><msup><mi>v</mi><mi>T</mi></msup><msub><mi>J</mi><mi>f</mi></msub></mrow><annotation encoding="application/x-tex">F: x, v \to v^T J_f</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">F</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">x</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">v</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">→</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.1274em;vertical-align:-0.2861em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">T</span></span></span></span></span></span></span></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.09618em;">J</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0962em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.10764em;">f</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span></span></span> and use the gradcheck defined above on this function.
Note that <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>v</mi></mrow><annotation encoding="application/x-tex">v</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">v</span></span></span></span></span> in this case is just a random vector with the same type as <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">f(x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span></span>.</p>
<p>The fast version of gradgradcheck is implemented by using the fast version of gradcheck on that same function <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>F</mi></mrow><annotation encoding="application/x-tex">F</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">F</span></span></span></span></span>.</p>
</section>
</section>
</article>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="hip.html" class="btn btn-neutral float-right" title="HIP (ROCm) semantics" accesskey="n" rel="next">Next <img src="../_static/images/chevron-right-orange.svg" class="next-page"></a>
<a href="faq.html" class="btn btn-neutral" title="Frequently Asked Questions" accesskey="p" rel="prev"><img src="../_static/images/chevron-right-orange.svg" class="previous-page"> Previous</a>
</div>
<hr>
<div role="contentinfo">
<p>
© Copyright 2022, PyTorch Contributors.
</p>
</div>
<div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</div>
</footer>
</div>
</div>
<div class="pytorch-content-right" id="pytorch-content-right">
<div class="pytorch-right-menu" id="pytorch-right-menu">
<div class="pytorch-side-scroll" id="pytorch-side-scroll-right">
<ul>
<li><a class="reference internal" href="#">Gradcheck mechanics</a><ul>
<li><a class="reference internal" href="#notations-and-background-information">Notations and background information</a></li>
<li><a class="reference internal" href="#default-backward-mode-gradcheck-behavior">Default backward mode gradcheck behavior</a><ul>
<li><a class="reference internal" href="#real-to-real-functions">Real-to-real functions</a><ul>
<li><a class="reference internal" href="#default-real-input-numerical-evaluation">Default real input numerical evaluation</a></li>
<li><a class="reference internal" href="#default-real-input-analytical-evaluation">Default real input analytical evaluation</a></li>
</ul>
</li>
<li><a class="reference internal" href="#complex-to-real-functions">Complex-to-real functions</a><ul>
<li><a class="reference internal" href="#default-complex-input-numerical-evaluation">Default complex input numerical evaluation</a></li>
<li><a class="reference internal" href="#default-complex-input-analytical-evaluation">Default complex input analytical evaluation</a></li>
</ul>
</li>
<li><a class="reference internal" href="#functions-with-complex-outputs">Functions with complex outputs</a></li>
</ul>
</li>
<li><a class="reference internal" href="#fast-backward-mode-gradcheck">Fast backward mode gradcheck</a><ul>
<li><a class="reference internal" href="#fast-gradcheck-for-real-to-real-functions">Fast gradcheck for real-to-real functions</a></li>
<li><a class="reference internal" href="#fast-gradcheck-for-complex-to-real-functions">Fast gradcheck for complex-to-real functions</a><ul>
<li><a class="reference internal" href="#fast-complex-input-numerical-evaluation">Fast complex input numerical evaluation</a></li>
<li><a class="reference internal" href="#fast-complex-input-analytical-evaluation">Fast complex input analytical evaluation</a></li>
<li><a class="reference internal" href="#why-not-use-a-complex-u">Why not use a complex <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>u</mi></mrow><annotation encoding="application/x-tex">u</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">u</span></span></span></span></span></a></li>
</ul>
</li>
<li><a class="reference internal" href="#fast-gradcheck-for-functions-with-complex-outputs">Fast gradcheck for functions with complex outputs</a></li>
</ul>
</li>
<li><a class="reference internal" href="#gradgradcheck-implementation">Gradgradcheck implementation</a></li>
</ul>
</li>
</ul>
</div>
</div>
</div>
</section>
</div>
<script type="text/javascript" id="documentation_options" data-url_root="../" src="../_static/documentation_options.js"></script>
<script data-url_root="../" id="documentation_options" src="../_static/documentation_options.js"></script>
<script src="../_static/jquery.js"></script>
<script src="../_static/underscore.js"></script>
<script src="../_static/_sphinx_javascript_frameworks_compat.js"></script>
<script src="../_static/doctools.js"></script>
<script src="../_static/clipboard.min.js"></script>
<script src="../_static/copybutton.js"></script>
<script type="text/javascript" src="../_static/js/vendor/popper.min.js"></script>
<script type="text/javascript" src="../_static/js/vendor/bootstrap.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/list.js/1.5.0/list.min.js"></script>
<script type="text/javascript" src="../_static/js/theme.js"></script>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
<script script type="text/javascript">
var collapsedSections = ['Developer Notes', 'Language Bindings', 'Libraries', 'Community'];
</script>
<img height="1" width="1" style="border-style:none;" alt="" src="https://www.googleadservices.com/pagead/conversion/795629140/?label=txkmCPmdtosBENSssfsC&guid=ON&script=0"/>
<!-- Begin Footer -->
<div class="container-fluid docs-tutorials-resources" id="docs-tutorials-resources">
<div class="container">
<div class="row">
<div class="col-md-4 text-center">
<h2>Docs</h2>
<p>Access comprehensive developer documentation for PyTorch</p>
<a class="with-right-arrow" href="https://pytorch.org/docs/stable/index.html">View Docs</a>
</div>
<div class="col-md-4 text-center">
<h2>Tutorials</h2>
<p>Get in-depth tutorials for beginners and advanced developers</p>
<a class="with-right-arrow" href="https://pytorch.org/tutorials">View Tutorials</a>
</div>
<div class="col-md-4 text-center">
<h2>Resources</h2>
<p>Find development resources and get your questions answered</p>
<a class="with-right-arrow" href="https://pytorch.org/resources">View Resources</a>
</div>
</div>
</div>
</div>
<footer class="site-footer">
<div class="container footer-container">
<div class="footer-logo-wrapper">
<a href="https://pytorch.org/" class="footer-logo"></a>
</div>
<div class="footer-links-wrapper">
<div class="footer-links-col">
<ul>
<li class="list-title"><a href="https://pytorch.org/">PyTorch</a></li>
<li><a href="https://pytorch.org/get-started">Get Started</a></li>
<li><a href="https://pytorch.org/features">Features</a></li>
<li><a href="https://pytorch.org/ecosystem">Ecosystem</a></li>
<li><a href="https://pytorch.org/blog/">Blog</a></li>
<li><a href="https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md">Contributing</a></li>
</ul>
</div>
<div class="footer-links-col">
<ul>
<li class="list-title"><a href="https://pytorch.org/resources">Resources</a></li>
<li><a href="https://pytorch.org/tutorials">Tutorials</a></li>
<li><a href="https://pytorch.org/docs/stable/index.html">Docs</a></li>
<li><a href="https://discuss.pytorch.org" target="_blank">Discuss</a></li>
<li><a href="https://github.com/pytorch/pytorch/issues" target="_blank">Github Issues</a></li>
<li><a href="https://pytorch.org/assets/brand-guidelines/PyTorch-Brand-Guidelines.pdf" target="_blank">Brand Guidelines</a></li>
</ul>
</div>
<div class="footer-links-col">
<ul>
<li class="list-title">Stay up to date</li>
<li><a href="https://www.facebook.com/pytorch" target="_blank">Facebook</a></li>
<li><a href="https://twitter.com/pytorch" target="_blank">Twitter</a></li>
<li><a href="https://www.youtube.com/pytorch" target="_blank">YouTube</a></li>
<li><a href="https://www.linkedin.com/company/pytorch" target="_blank">LinkedIn</a></li>
</ul>
</div>
<div class="footer-links-col">
<ul>
<li class="list-title">PyTorch Podcasts</li>
<li><a href="https://open.spotify.com/show/6UzHKeiy368jKfQMKKvJY5" target="_blank">Spotify</a></li>
<li><a href="https://podcasts.apple.com/us/podcast/pytorch-developer-podcast/id1566080008" target="_blank">Apple</a></li>
<li><a href="https://www.google.com/podcasts?feed=aHR0cHM6Ly9mZWVkcy5zaW1wbGVjYXN0LmNvbS9PQjVGa0lsOA%3D%3D" target="_blank">Google</a></li>
<li><a href="https://music.amazon.com/podcasts/7a4e6f0e-26c2-49e9-a478-41bd244197d0/PyTorch-Developer-Podcast?" target="_blank">Amazon</a></li>
</ul>
</div>
</div>
<div class="privacy-policy">
<ul>
<li class="privacy-policy-links"><a href="https://www.linuxfoundation.org/terms/" target="_blank">Terms</a></li>
<li class="privacy-policy-links">|</li>
<li class="privacy-policy-links"><a href="https://www.linuxfoundation.org/privacy-policy/" target="_blank">Privacy</a></li>
</ul>
</div>
<div class="copyright">
<p>© Copyright The Linux Foundation. The PyTorch Foundation is a project of The Linux Foundation.
For web site terms of use, trademark policy and other policies applicable to The PyTorch Foundation please see
<a href="www.linuxfoundation.org/policies/">www.linuxfoundation.org/policies/</a>. The PyTorch Foundation supports the PyTorch open source
project, which has been established as PyTorch Project a Series of LF Projects, LLC. For policies applicable to the PyTorch Project a Series of LF Projects, LLC,
please see <a href="www.lfprojects.org/policies/">www.lfprojects.org/policies/</a>.</p>
</div>
</div>
</footer>
<div class="cookie-banner-wrapper">
<div class="container">
<p class="gdpr-notice">To analyze traffic and optimize your experience, we serve cookies on this site. By clicking or navigating, you agree to allow our usage of cookies. As the current maintainers of this site, Facebook’s Cookies Policy applies. Learn more, including about available controls: <a href="https://www.facebook.com/policies/cookies/">Cookies Policy</a>.</p>
<img class="close-button" src="../_static/images/pytorch-x.svg">
</div>
</div>
<!-- End Footer -->
<!-- Begin Mobile Menu -->
<div class="mobile-main-menu">
<div class="container-fluid">
<div class="container">
<div class="mobile-main-menu-header-container">
<a class="header-logo" href="https://pytorch.org/" aria-label="PyTorch"></a>
<a class="main-menu-close-button" href="#" data-behavior="close-mobile-menu"></a>
</div>
</div>
</div>
<div class="mobile-main-menu-links-container">
<div class="main-menu">
<ul>
<li>
<a href="https://pytorch.org/get-started">Get Started</a>
</li>
<li>
<a href="https://pytorch.org/ecosystem">Ecosystem</a>
</li>
<li>
<a href="https://pytorch.org/mobile">Mobile</a>
</li>
<li>
<a href="https://pytorch.org/blog/">Blog</a>
</li>
<li>
<a href="https://pytorch.org/tutorials">Tutorials</a>
</li>
<li class="resources-mobile-menu-title" class="active">
Docs
</li>
<ul class="resources-mobile-menu-items">
<li>
<a href="https://pytorch.org/docs/stable/index.html">PyTorch</a>
</li>
<li>
<a href="https://pytorch.org/audio/stable/index.html">torchaudio</a>
</li>
<li>
<a href="https://pytorch.org/text/stable/index.html">torchtext</a>
</li>
<li>
<a href="https://pytorch.org/vision/stable/index.html">torchvision</a>
</li>
<li>
<a href="https://pytorch.org/torcharrow">torcharrow</a>
</li>
<li>
<a href="https://pytorch.org/data">TorchData</a>
</li>
<li>
<a href="https://pytorch.org/torchrec">TorchRec</a>
</li>
<li>
<a href="https://pytorch.org/serve/">TorchServe</a>
</li>
<li>
<a href="https://pytorch.org/torchx/">TorchX</a>
</li>
<li>
<a href="https://pytorch.org/xla">PyTorch on XLA Devices</a>
</li>
</ul>
<li class="resources-mobile-menu-title">
Resources
</li>
<ul class="resources-mobile-menu-items">
<li>
<a href="https://pytorch.org/features">About</a>
</li>
<li>
<a href="https://pytorch.org/foundation">PyTorch Foundation</a>
</li>
<li>
<a href="https://pytorch.org/#community-module">Community</a>
</li>
<li>
<a href="https://pytorch.org/community-stories">Community Stories</a>
</li>
<li>
<a href="https://pytorch.org/resources">Developer Resources</a>
</li>
<li>
<a href="https://pytorch.org/events">Events</a>
</li>
<li>
<a href="https://discuss.pytorch.org/">Forums</a>
</li>
<li>
<a href="https://pytorch.org/hub">Models (Beta)</a>
</li>
</ul>
<li>
<a href="https://github.com/pytorch/pytorch">Github</a>
</li>
</ul>
</div>
</div>
</div>
<!-- End Mobile Menu -->
<script type="text/javascript" src="../_static/js/vendor/anchor.min.js"></script>
<script type="text/javascript">
$(document).ready(function() {
mobileMenu.bind();
mobileTOC.bind();
pytorchAnchors.bind();
sideMenus.bind();