.. automodule:: torch.nn
.. currentmodule:: torch.nn
.. autoclass:: Parameter
:members:
.. autoclass:: Module
:members:
.. autoclass:: Sequential
:members:
.. autoclass:: ModuleList
:members:
.. autoclass:: ModuleDict
:members:
.. autoclass:: ParameterList
:members:
.. autoclass:: ParameterDict
:members:
.. autoclass:: Conv1d
:members:
.. autoclass:: Conv2d
:members:
.. autoclass:: Conv3d
:members:
.. autoclass:: ConvTranspose1d
:members:
.. autoclass:: ConvTranspose2d
:members:
.. autoclass:: ConvTranspose3d
:members:
.. autoclass:: Unfold
:members:
.. autoclass:: Fold
:members:
.. autoclass:: MaxPool1d
:members:
.. autoclass:: MaxPool2d
:members:
.. autoclass:: MaxPool3d
:members:
.. autoclass:: MaxUnpool1d
:members:
.. autoclass:: MaxUnpool2d
:members:
.. autoclass:: MaxUnpool3d
:members:
.. autoclass:: AvgPool1d
:members:
.. autoclass:: AvgPool2d
:members:
.. autoclass:: AvgPool3d
:members:
.. autoclass:: FractionalMaxPool2d
:members:
.. autoclass:: LPPool1d
:members:
.. autoclass:: LPPool2d
:members:
.. autoclass:: AdaptiveMaxPool1d
:members:
.. autoclass:: AdaptiveMaxPool2d
:members:
.. autoclass:: AdaptiveMaxPool3d
:members:
.. autoclass:: AdaptiveAvgPool1d
:members:
.. autoclass:: AdaptiveAvgPool2d
:members:
.. autoclass:: AdaptiveAvgPool3d
:members:
.. autoclass:: ReflectionPad1d
:members:
.. autoclass:: ReflectionPad2d
:members:
.. autoclass:: ReplicationPad1d
:members:
.. autoclass:: ReplicationPad2d
:members:
.. autoclass:: ReplicationPad3d
:members:
.. autoclass:: ZeroPad2d
:members:
.. autoclass:: ConstantPad1d
:members:
.. autoclass:: ConstantPad2d
:members:
.. autoclass:: ConstantPad3d
:members:
.. autoclass:: ELU
:members:
.. autoclass:: Hardshrink
:members:
.. autoclass:: Hardtanh
:members:
.. autoclass:: LeakyReLU
:members:
.. autoclass:: LogSigmoid
:members:
.. autoclass:: MultiheadAttention
:members:
.. autoclass:: PReLU
:members:
.. autoclass:: ReLU
:members:
.. autoclass:: ReLU6
:members:
.. autoclass:: RReLU
:members:
.. autoclass:: SELU
:members:
.. autoclass:: CELU
:members:
.. autoclass:: GELU
:members:
.. autoclass:: Sigmoid
:members:
.. autoclass:: Softplus
:members:
.. autoclass:: Softshrink
:members:
.. autoclass:: Softsign
:members:
.. autoclass:: Tanh
:members:
.. autoclass:: Tanhshrink
:members:
.. autoclass:: Threshold
:members:
.. autoclass:: Softmin
:members:
.. autoclass:: Softmax
:members:
.. autoclass:: Softmax2d
:members:
.. autoclass:: LogSoftmax
:members:
.. autoclass:: AdaptiveLogSoftmaxWithLoss
:members:
.. autoclass:: BatchNorm1d
:members:
.. autoclass:: BatchNorm2d
:members:
.. autoclass:: BatchNorm3d
:members:
.. autoclass:: GroupNorm
:members:
.. autoclass:: SyncBatchNorm
:members:
.. autoclass:: InstanceNorm1d
:members:
.. autoclass:: InstanceNorm2d
:members:
.. autoclass:: InstanceNorm3d
:members:
.. autoclass:: LayerNorm
:members:
.. autoclass:: LocalResponseNorm
:members:
.. autoclass:: RNNBase
:members:
.. autoclass:: RNN
:members:
.. autoclass:: LSTM
:members:
.. autoclass:: GRU
:members:
.. autoclass:: RNNCell
:members:
.. autoclass:: LSTMCell
:members:
.. autoclass:: GRUCell
:members:
.. autoclass:: Transformer
:members:
.. autoclass:: TransformerEncoder
:members:
.. autoclass:: TransformerDecoder
:members:
.. autoclass:: TransformerEncoderLayer
:members:
.. autoclass:: TransformerDecoderLayer
:members:
.. autoclass:: Identity
:members:
.. autoclass:: Linear
:members:
.. autoclass:: Bilinear
:members:
.. autoclass:: Dropout
:members:
.. autoclass:: Dropout2d
:members:
.. autoclass:: Dropout3d
:members:
.. autoclass:: AlphaDropout
:members:
.. autoclass:: Embedding
:members:
.. autoclass:: EmbeddingBag
:members:
.. autoclass:: CosineSimilarity
:members:
.. autoclass:: PairwiseDistance
:members:
.. autoclass:: L1Loss
:members:
.. autoclass:: MSELoss
:members:
.. autoclass:: CrossEntropyLoss
:members:
.. autoclass:: CTCLoss
:members:
.. autoclass:: NLLLoss
:members:
.. autoclass:: PoissonNLLLoss
:members:
.. autoclass:: KLDivLoss
:members:
.. autoclass:: BCELoss
:members:
.. autoclass:: BCEWithLogitsLoss
:members:
.. autoclass:: MarginRankingLoss
:members:
.. autoclass:: HingeEmbeddingLoss
:members:
.. autoclass:: MultiLabelMarginLoss
:members:
.. autoclass:: SmoothL1Loss
:members:
.. autoclass:: SoftMarginLoss
:members:
.. autoclass:: MultiLabelSoftMarginLoss
:members:
.. autoclass:: CosineEmbeddingLoss
:members:
.. autoclass:: MultiMarginLoss
:members:
.. autoclass:: TripletMarginLoss
:members:
.. autoclass:: PixelShuffle
:members:
.. autoclass:: Upsample
:members:
.. autoclass:: UpsamplingNearest2d
:members:
.. autoclass:: UpsamplingBilinear2d
:members:
.. autoclass:: DataParallel
:members:
.. autoclass:: torch.nn.parallel.DistributedDataParallel
:members:
.. autofunction:: torch.nn.utils.clip_grad_norm_
.. autofunction:: torch.nn.utils.clip_grad_value_
.. autofunction:: torch.nn.utils.parameters_to_vector
.. autofunction:: torch.nn.utils.vector_to_parameters
.. currentmodule:: torch.nn.utils.prune
.. autoclass :: torch.nn.utils.prune.BasePruningMethod
:members:
.. autoclass :: torch.nn.utils.prune.PruningContainer
:inherited-members:
:members:
.. autoclass :: torch.nn.utils.prune.Identity
:inherited-members:
:members:
.. autoclass :: torch.nn.utils.prune.RandomUnstructured
:inherited-members:
:members:
.. autoclass :: torch.nn.utils.prune.L1Unstructured
:inherited-members:
:members:
.. autoclass :: torch.nn.utils.prune.RandomStructured
:inherited-members:
:members:
.. autoclass :: torch.nn.utils.prune.LnStructured
:inherited-members:
:members:
.. autoclass :: torch.nn.utils.prune.CustomFromMask
:inherited-members:
:members:
.. autofunction :: torch.nn.utils.prune.identity
.. autofunction :: torch.nn.utils.prune.random_unstructured
.. autofunction :: torch.nn.utils.prune.l1_unstructured
.. autofunction :: torch.nn.utils.prune.random_structured
.. autofunction :: torch.nn.utils.prune.ln_structured
.. autofunction :: torch.nn.utils.prune.global_unstructured
.. autofunction :: torch.nn.utils.prune.custom_from_mask
.. autofunction :: torch.nn.utils.prune.remove
.. autofunction :: torch.nn.utils.prune.is_pruned
.. autofunction:: torch.nn.utils.weight_norm
.. autofunction:: torch.nn.utils.remove_weight_norm
.. autofunction:: torch.nn.utils.spectral_norm
.. autofunction:: torch.nn.utils.remove_spectral_norm
.. currentmodule:: torch.nn.utils.rnn
.. autofunction:: torch.nn.utils.rnn.PackedSequence
.. autofunction:: torch.nn.utils.rnn.pack_padded_sequence
.. autofunction:: torch.nn.utils.rnn.pad_packed_sequence
.. autofunction:: torch.nn.utils.rnn.pad_sequence
.. autofunction:: torch.nn.utils.rnn.pack_sequence
.. currentmodule:: torch.nn
.. autoclass:: Flatten
:members:
Quantization refers to techniques for performing computations and storing tensors at lower bitwidths than floating point precision. PyTorch supports both per tensor and per channel asymmetric linear quantization. To learn more how to use quantized functions in PyTorch, please refer to the :ref:`quantization-doc` documentation.